[

AS/400

ILE RPG/400
Programmer’s Guide

Version 3

SC09-1525-00



Take Note!

Before using this information and the product it supports, be sure to read the general information under “Notices”
on page Xi.

First Edition (September 1994)

This edition to Version 3 Release 1 Modification 0, of IBM Application System/400 ILE RPG/400 (program 5763-RG1)
and to all subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using
the proper edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not
stocked at the address given below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address your
comments to:

IBM Canada Ltd. Labgratory, Information Development
2G/345/1150/TOR
1150 Eglinton Avenue East

North York, Ontario, Canada. M3C 1H7

You can also send your comments by facsimile (attention: RCF Coordinator), or you can send your comments elec-
tronically to IBM. See “Communicating Your Comments to IBM” for a description of the methods. This page imme-
diately precedes the Readers’ Comment Form at the back of this publication.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994. All rights reserved.

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

IBM is a registered trademark of International Business Machines Corporation, Armonk, N.Y.




Contents

NOLICES . . . . o o e xi
Programming Interface Information . . ... ... Xi
Trademarks and Service Marks . . . . . . . ... oo xi
About This Guide . . . . . . . . . . . Xiii
Who Should Use This Guide . . . . . . . . . . xiii
ILE RPG/400 Introduction . ... ... . ... . ... 1
Chapter 1. Overview of the RPG IV Programming Language . .. ... ... 3
RPG IV Specifications . . . . . .. .. ... 3
Cycle Programming . . . . . . ..o 3
INQICAtOrS . . . o 5
Operation COAES . . . . . . . oo i 6
Example of an ILE RPG/400 Program . . . . . ... ... ... ... 6
Using the OS/400 System . . . . . . . ... 12
Interacting with the System . . . ... .. ... ..o 12
AS/A00 TOOIS . . o . 13
Application Development Toolset/400 (ADTS/400) . . .. ... ........ 13
Application Development Manager/400 . . . .. ................. 13
CoOperative Development Environment/400 . . . . . ........... .. 13
Chapter 2. RPG ProgramminginlILE . .. .................... 15
Program Creation . . . . . . . .. 15
Program Management . . . . . ... ... 17
Program Call . . . . . . ... ... 17
Source Debugging . . . . . .o 18
Bindable APIS . . . . . . 18
Chapter 3. Program Creation Strategies . . .. ................. 19
Strategy 1: OPM-Compatible Application . . .. .................. 19
Method . . . . . . 19
Example of OPM-Compatible Program . . . ... .............. .. 20
Related Information . . . . . . . ... 21
Strategy 2: ILE Program Using CRTBNDRPG . . .. ............... 21
Method . . . . . . 21
Example of ILE Program Using CRTBNDRPG . . . . ........... .. 22
Related Information . . . . . . . .. 23
Strategy 3: ILE Application Using CRTRPGMOD . . . .. ............ 24
Method . . . . . . . 24
Single-Language ILE Application Scenario . . ... .............. 25
Mixed-Language ILE Application Scenario . . . . .. .............. 26
Advanced Application Scenario . . . . ... 27
Related Information . . . . . . . . ... 27

A Strategy to Avoid . . . . . ... 28
Creating and Running an ILE RPG/400 Application ... ................... 29
Chapter 4. Entering Source Statements . . . . .. ............... 31

© Copyright IBM Corp. 1994 iii



iv

Creating a Library and Source Physical File . ... ... . ... .. ... .. .
Using the Source Entry Utility (SEU) . . . . .. ... ... . . ... .. . .. . .
Using DB2/400 SQL Statements . . . . ... ... ... . ... ... ... .. .

Chapter 5. Creating a Program with the CRTBNDRPG Command . . . . .
Using the CRTBNDRPG Command . . . ... ... ... . ... . ... ...
Using a Compiler Listing . . .. ... .. .. ... ... . . ... .. .. .
Obtaining a Compiler Listing . . . ... ... ... .. .. . .. .. .. . .
Correcting Compilation Errors . . . .. . .. ... ... .. .. .. ... ..
Correcting Run-time Errors . . . . . .. .. ... . ... ... . ... . ..
Using a Compiler Listing for Maintenance . . . . . ... . ... . ... . ...
Accessing the RETURNCODE Data Area . . . . . ... ... ... . ... .. .

Chapter 6. Creating a Program with the CRTRPGMOD and CRTPGM
Commands . ... .. ... .. .. ... ...
Creating a Module Object . . . . ... ... .. .. ... .. .. ... ... ...
Using the CRTRPGMOD Command . . . . ... ... .. .. ... ... ..
Creating a Module for Source Debugging . . . . ... ... ... ... .. . .
Additional Examples . . .. . ...
Behavior of Bound ILE RPG/400 Modules . . . . . ... .. .. ... ... ..
Related CL Commands . .. ... ... ... .. ... .. .. ... ... ..
Binding Modules into a Program . . . . . ... ... ... ... ..
Using the CRTPGM Command . . . . .. ... . . ... ... . . .. . .
Additional Examples . . . ... ...
Related CL Commands . . .. ... ... ... .. .. . ... . ... .. .. ..
Using a Binder Listing . . . . ... ... ... ... . ... .. .. .. .. ...,
Changing a Module or Program . . . . . ... ... ... . ... . ... ..
Using the UPDPGM Command . . . . ... ... ... .. . ... .. .. ..
Changing the Optimization Level . . ... .. ... ... . ... . .
Removing Observability . . . .. ... ... ... .. .. .. .. ... .
Reducing an Object's Size . . . .. ... ... . ... ... ... ... ..

Chapter 7. Creating a Service Program . . . . .. ... .. ... .. . .
Service Program Overview . . . ... .. ... ... ... ... .
Strategies for Creating Service Programs . . . . . .. ... . .. .. .. .. .. .
Creating a Service Program Using CRTSRVPGM . . . . . . . . . . ... ...
Changing A Service Program . . . . .. ... ... ... .. ... ... .. ..
Related CL commands . ... .. ... . . ... . . . T
Sample Service Program . . . . . ...
Creating the Service Program . . . . .. . ... . .. .. ... .. .. .
Binding to a Program . . . . .. ... ...
Updating the Service Program . . . . .. .. ... .. . ... ... . ... ..
Sample Binder Listing . . . ... .. ... .

Chapter 8. Running a Program . . . . . .. .. .. .. . . .
Running a Program Using the CL CALL Command . . . . . ... . . ... . . .

Passing Parameters using the CL CALL Command . . . ... .. ... ...
Running a Program From a Menu-Driven Application . . . . . . .. . .. ...
Running a Program Using a User-Created Command . . . . . . . . . .. . ..
Replying to Run-time Inquiry Messages . . . ... . . . ... .. .
Ending an ILE Program . . . .. ... ... ... .. ... ..

ILE RPG/400 Programmer's Guide




Running in the OPM Default Activation Group . . . . ... .. ...... .. 81

Maintaining OPM RPG/400 and ILE RPG/400 Program Compatibility . . . . 81
Deleting an Activation Group . . . . . .. ... 81
Reclaim Resources Command . . . . . . .. ... ... 82
Managing Dynamically-Allocated Storage . . . .. ................. 82
Managing the DefaultHeap . . ... ... .................... 83
Chapter 9. Calling Programs and Procedures . . .. ... .......... 91
Program/Procedure Call Overview . . . ... ... .. ............. 91
Calling Programs . . . . . . . . .. ... 91
Calling Procedures . . . . ... ... ... ... 92
The Call Stack . . . . . . . . . . 92
Using the CALL or CALLB Operations . . . .. ................ .. 94
Examples of the Call Operations . . . .. .. ... . ... .. ........ 95
Passing Parameters . . . . .. . .. ... 95
Using the PLIST Operation . . . .. ... ... ... ........... 96
Using the PARM operation . . . . ... ... ... ... ............. 96
Using Operational Descriptors . . . . . . .. .. ... 97
Omitting Parameters . . . . . ... ... ... 98
Checking for the Number of Passed Parameters . . . ... ... ... ... 100
ILE Interlanguage Calls . . . . . ... ... ... ... 106
Returning from a Called Program/Procedure . . . . . ... ........... 106
Normal End . . . . . . . 106
Abnormal End . . . . ... 107
Returning without Ending . . . . . . . ... ... 108
Returning using ILE Bindable APIs . . . . . .. ............ ... 108
Using Bindable APIs . . . . . ... ... ... 109
Examples of Using Bindable APIs . . . .. .................. 109
Calling a Graphics Routine . . . . .. ... ... ... ... ... .. 110
Calling Special Routines . . . . .. .. ... ... ... 110
Debugging and Exception Handling .. ... ... ... ... .. ................ 111
Chapter 10. Debugging Programs . . . .. .. ................ 113
The ILE Source Debugger . . . . . . . . . 113
Debug Commands . . . . . . ... ... 114
Preparing a Program for Debugging . . . . . ... ... .. ... 115
Creating a Root Source View . . . .. ... ................ .. 116
Creating a COPY Source View . . .. ... . ... ... ... ... .. 116
Creating a Listing View . . . . .. ... ... ... ... 117
Creating a Statement View . . . . .. ... ... ... ... ... 118
Starting the ILE Source Debugger . . . . . ... ... ... ... 118
Setting Debug Options . . . . . . . .. ... 119
Adding/Removing Programs from a Debug Session . . . .. ........ .. 120
Viewing the Program Source . . . . .. . ... ... 122
Viewing a Different Module . . . .. ... .. ... .. 122
Changing the View of a Module . . .. ... . ............... .. 124
Setting and Removing Breakpoints . . . . . ... ... oL 125
Setting and Removing Unconditional Breakpoints . . . ... ... ... .. 126
Setting and Removing Conditional Breakpoints . . . . ... ... ... ... 128
National Language Sort Sequence (NLSS) . . ....... ... ... ... 130
Setting and Removing Breakpoints Using Statement Numbers . . . . . .. 132
Removing All Breakpoints . . . . . ... ... ... o 132

Contents V



Stepping Through the Program Object . . . . . ... ... . ... ... . . . . 132

Stepping Over Program Objects . . . . .. ... ... ............ 133
Stepping Into Program Objects . . . ... ... ... .. ... ... ... . . 134
Stepping Over Procedures . . . .. ... ... .. ... ... . ... .... 136
Stepping Into Procedures . . . . ... ... 136
Displaying Data and Expressions . . . ... . ....... .. ... . ... . . 136
Displaying Fields as Hexadecimal Values . . . . . ... . ... ... . . . . 142
Displaying Fields in Character Format . . . . .. ... ... ... .. .. .. 142
Using Debug Built-In Functions . . . . ... ... ... . . .. ... . . . . 142
Changing the Value of Fields . . . .. ... ... ... ... ... . ... 143
Displaying Attributes of a Field . . . .. ... ...... .. .. .. . . . ... . 146
Equating a Name with a Field, Expression, or Command . . . . .. . ... .. 146
Source Debug National Language Support for ILE RPG/400 . . . . . . . . .. 147
Sample Source for Debug Examples . . . . ... .. ... .. ... ... ... 147
Chapter 11. Handling Exceptions . . . . .. ... .. ... .. .. .. . .. 153
Exception Handling Overview . . . . ... ... ... ... . .. .. ... ... 153
ILE RPG/400 Exception Handling . . . . ... ... ... . .. .. . . . . .| 155
Using Exception Handlers . . . . .. . .. ... ... ... . .. ... .. .. .. 157
Exception Handler Priority . . . . . . . ... ... ... ... .. ... .. . 157
Nested Exceptions . . . ... ... ... ... . ... ... . ... .. 157
Unhandled Exceptions . . .. ... .. .. R 158
Optimization Considerations . . . . . .. ... ... ... .. . .. .. . ... 160
Using RPG-Specific Handlers . . . . .. .. .. ... .. ... ... . . . . . . 161
Specifying Error Indicators . . . . ... ... 161
Using an Error Subroutine . . . . . . ... ... ... ... ... .. ... . 162
Specifying a Return Point in the ENDSR Operation . . ... ... ... .. 170
ILE Condition Handlers . . . . . ... ... ... ... . . ... . ... .. . 170
Using a Condition Handler . . . . ... ... . ... ... . ... ... .. .. 171
Using Cancel Handlers . . . .. . ... .. ... ... ... . . . . ... . . . 176
Chapter 12. ObtainingaDump . ... .. ... ... ... .. .. . . . . . . 177
Obtaining an ILE RPG/400 Formatted Dump . . . . . b 177
Using the DUMP Operation Code . . . ... ... ... ... .. .. .. .. .. 177
Example of a Formatted Dump . . . . .. . ... ... ... .. ... .. .. . . 178
Working with Files and Devices . . .. ....... ... .. . . ... .. ... ... . .. .. 183
Chapter 13. Defining Files . . . ... ... ... ... .. . . . . . . . . . .. 185
Associating Files with Input/Output Devices . . . . . ... ... ... .. . . 185
Naming Files . . . . ... ... ... 187
Types of File Descriptions . . . . .. ... .. ... ... ... ... ... . .. 187
Defining Externally-Described Files . . . . ... ... ... . . . . ... .. . . 189
Renaming Record-Format Names . . . . . ... ... ... . ... . ... . 189
Ignoring Record Formats . . . . . ... ... ... ... .. ... . . ... . 190
Using Input Specifications to Modify an External Description . . . . . . . . 190
Using Output Specifications . . . . . .. ... ... ... .. . .. .. .. . . 192
Handling Floating-Point Fields . . . . .. ... ... ... . ... . . ... 194
Handling Variable-Length Fields . . . . . ... ... .. ... .. .. .. . . 194
Handling Null Values . . . . . ... ... ... ... ... .. . . ... .. 194
Level Checking . . ... ... ... ... .. ... 195
Defining Program-Described Files . . . . . .. ... ... ... ... . . .. .. 195
Data Management Operations and ILE RPG/400 |/O Operations . . . . . . . 196

Vi  ILE RPG/400 Programmer's Guide




Chapter 14. General File Considerations . . .. ............... 197

Overriding and Redirecting File Input and Output . . . ... ... ... . ... 197
File Locking . . ... .. P 199
Record LOCKING . . .« o o oo o 199
Sharing an Open Data Path . . . ... .. ... .. 201
SPOONING -« o 202
Output SPOOIING . . . . - o o 202
Record Blocking and Unblocking . . . . . ... ... ... 203
SRTSEQ/ALTSEQ in an RPG Program vs aDDS File . . .. ......... 204
Chapter 15. Accessing Database Files . ... ................ 205
Database Files . . . . . . o 205
Physical Files and Logical Files . . .. ... ... 205
Data Files and Source Files . . . . . . . . ... 205
Using Externally-Described Disk Files .. . .................. . 206
Record Format Specifications . . . . .. . ... ... 206
Access Path . . . . . . e 206
Valid Keys fora Record or File . . ... ... 209
Using Program-Described Disk Files . . .. .................... 211
Indexed File . . . . . e 211
Sequential File . . . ... .. ... 213
Record Address File . . . . . . . . . 213
Methods for Processing Disk Files . . . . ... ... ... ... ... v 215
Consecutive Processing . . . . . .« oo oo 216
Sequential-by-Key Processing . . . . ... ..o 216
Random-by-Key Processing . . . . .. .. ... 223
Sequential-within-Limits Processing . . . . . .. .. .. 224
Relative-Record-Number Processing . . . . . . . . . .o 227
Valid File Operations . . . . . .. ..o 228
Using Commitment Control . . . . . .. .. .. 231
Starting and Ending Commitment Control . . . .. ... 231
Specifying Files for Commitment Control . . . .. e e 233
Using the COMMIT Operation . . .. ... ... ..o 233
Specifying Conditional Commitment Control . . . ............... 235
Commitment Control in the Program Cycle . . . . ... ......... .. 236
DDM FileS . . . . o o 237
Using Pre-V3R1 DDM Files . . . ... ... .o 237
Chapter 16. Accessing Externally-Attached Devices ... ......... 239
Types of Device Files . . . . . . ... 239
Accessing Printer Devices . . . . . ... 240
Specifying PRINTER Files . . . . ... ... ... e 240
Handling Page Overflow . . . . ... ... ... v 240
Using the Fetch-Overflow Routine in Program-Described Files . . ... .. 243
Changing Forms Control Information in a Program-Described File . . . . . 246
Accessing Tape Devices . . . . . . ... 248
Accessing Display Devices . . . . .. ... 249
Using Sequential Files . . . .. . . ..o 249
Specifying a Sequential File . . . . .. ... ... 249
Using SPECIAL Files . . . . . .. . o 250
Chapter 17. Using WORKSTN Files . . .. .................. 255
Intersystem Communications Function . . .................... 255
Using Externally-Described WORKSTN Files . .. ............... 255

Contents  Vii



Specifying Function Key Indicators on Display Device Files . . .. ... .. 258

Specifying Command Keys on Display Device Files . .. ... ... . ... 258
Processing an Externally-Described WORKSTN File . . . . ... . . .. .. 259
Using Subfiles . . . . .. ... ... 259
Using Program-Described WORKSTN Files . . . .. ... ... .. ... .. 262
Using a Program-Described WORKSTN File with a Format Name . . . . . 263
Using a Program-Described WORKSTN File without a Format Name . . . 264
Valid WORKSTN File Operations . . . . .. ... ... . ... . .. . ... 265
Multiple-Device Files . . . . . . ... ... .. .. ... ... ... ... 266
Chapter 18. Example of an Interactive Application . . .. .. ... .. .. 269
Database Physical File . . .. ... ... ... ... . ... ... 270
Main Menu Inquiry . ... ... 271
File Maintenance . . . .. ... .. ... ... ... .. .. ... .. .. 274
Search by Zip Code . ... .. ... ... ... ... .. ... ... .. 284
Search and Inquiry by Name . . . ... ... ... ... .. . 291
Appendixes . ... ... ... 299
Appendix A. Behavioral Differences Between OPM RPG/400 and ILE
RPG/A00 . . . . . ... 301
Compiling . .. .. ... ... 301
Running . . . .. 301
Debugging and Exception Handling . . . .. .. ... . ... . ... ... . 302
VO 302
DBCS Data in Character Fields . . . .. ... ... .. .. . . ... ... .. 304
Appendix B. Using the RPG Ill to RPG IV Conversion Aid . . . . . .. 307
Conversion Overview . . .. ... ... ... ... ... ... ... .. 307
File Considerations . . . . ... ... ... ... .. .. ... ... .. .. 308
ThelLogFile . . ... ... ... .. ... ... 309
Conversion Aid Tool Requirements . . . . . ... . ... ... . ... . 309
What the Conversion Aid Won'tDo . . . ... ... ... ... . ... . .. 310
Converting Your Source . . . .. ... ... ... 310
The CVTRPGSRC Command . . ... ...... ... .. ... ... .. .. 311
Converting a Member Using the Defaults . . . . . . . . .. ... .. . . 316
Converting All Members ina File . . ... ... ... .. . . ... .. . 316
Converting Some MembersinaFile ... .... ... ... . .. . . 317
Performing a Trial Conversion . . . . ... ... .. .. ... ... . .. .. 317
Obtaining Conversion Reports . . . . ... .. ... .. .. . .. ... .. 317
Converting Auto Report Source Members . . . . ... ... . .. ... .. 318
Inserting Specification Templates . . . . .. ... ... .. . ... . . .. 318
Converting Source froma Data File . . . .. ... ... . ... ... . 318
Example of Source Conversion . . . ... ... . ... .. .. . ... . .. 319
Analyzing Your Conversion . .. .. ... ... ... ... ... ... 321
Using the Conversion Report . . . . . ... .. ... . .. . ... .. 322
Usingthe Log File . . ... ... ... ... . ... ... . . .. . ... . . 324
Resolving Conversion Problems . . . . .. ... ... ... . . ... .. . 326
Compilation Errors in Existing RPG Il Code . . . . .. . .. ... . . . 326
Unsupported RPG Ill Features . . . ... ... .. .. .. ... .. .. . 326
Use of the /COPY Compiler Directive . . . .. . . ... . ... . . . 326
Use of Externally-Described Data Structures . . . . . .. ... . .. . . 329
Run-time Differences . .. ... ... ... .. ... . ... .. 331

viii ILE RPG/400 Programmer's Guide




Appendix C. The Create Commands . . .. .................. 333

Using CL Commands . . . ... ... ... .. 333
How to Interpret Syntax Diagrams . . . . ... ... ... ... ... ... 333
CRTBNDRPG Command . . . . . . . . . . . e 334
Description of the CRTBNDRPG Command . . . .. ... .......... 336
CRTRPGMOD Command . . . . . . . . ... . . i 347
Description of the CRTRPGMOD command . . . . . ... ... .. ... .. 348
Appendix D. Compiler Listings . . .. .......... ... ......... 359
Reading a Compiler Listing . . . . . ... ... ... ... 360
Prologue . . . . . . . .. 360
Source Section . . ... 361
Additional Diagnostic Messages . . . . . .. ... ... ... 364
Field Positions in Output Buffer . . . .. ... ................. 364
/COPY Member Table . . . . . . . . .. . ... .. 365
Compile-Time Data . . . .. .. ... ... 365
Key Field Information . . . . . ... ... ... ... 367
Cross-Reference Table . . . . . . . . . . . . 367
External References List . . . . . . . . . . . 368
Message SUMMArY . . . . . . ..ot 368
Final Summary . . . . . . . . . 369
Code Generation and Binding Errors . . . . . ... ... 369
Bibliography . . . . . . ... . ... 371
Index . . . . . . 375

Contents  iX



X ILE RPG/400 Programmer's Guide




Notices

Any reference to an IBM licensed program in this publication is not intended to
state or imply that only IBM’s program or other product may be used. Any func-
tionally equivalent product, program or service that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other products,
except those expressly designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 208 Harbor Drive, Stamford, Connecticut, USA
06904-2501.

This publication contains examples of data and reports used in daily business oper-
ations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Programming Interface Information

This publication is intended to help you create programs using RPG IV source.
This publication documents general-use programming interfaces and associated
guidance information provided by the ILE RPG/400 compiler.

General-use programming interfaces allow you to write programs that request or
receive services of the ILE RPG/400 compiler.

Trademarks and Service Marks

The following terms, denoted by an asterisk (*), in this publication, are trademarks
of the IBM Corporation in the United States or other countries:

Application System/400 AS/400

C/400 COBOL/400

DB2 GDDM

IBM ILE

Integrated Language Environment Operating System/2
Operating System/400 0Ss/2

0S/400 RPG IV

RPG/400 400

© Copyright IBM Corp. 1994 Xi



Xii  ILE RPG/400 Programmer's Guide




About This G

uide

This guide provides information that shows how to use ILE RPG/400* programming
language in the Integrated Language Environment*. (ILE RPG/400 language is an
implementation of the RPG IV* language on the AS/400* system with the Operating
System/400* (OS/400*) operating system.) Use this guide to create and run ILE*
applications using RPG IV source.

This guide shows how to:

» Enter RPG IV source statements
¢ Create modules

e Bind modules

¢ Run an ILE program

e Call other objects

¢ Debug an ILE program

* Handle exceptions

» Define and process files

e Access devices

 Convert programs from an RPG lIl format to RPG IV format
* Read compiler listings

This guide may refer to products that are announced but are not yet available.

You may need to refer to other IBM* guides for more specific information about a
particular topic. The Publications Ordering, SC41-3000, provides information on all
of the guides in the AS/400 library. For a list of related publications, see the bibli-
ography on page 371.

Who Should Use This Guide

© Copyright IBM Corp. 1994

This guide is for programmers who are familiar with the RPG/400 programming lan-
guage, but who want to learn how to use it in the ILE framework. This guide is
also for programmers who want to convert programs from the RPG Il to the RPG
IV format. It is designed to guide you in the use of the ILE RPG/400 compiler on
the AS/400 system.

Though this guide shows how to use the RPG IV in an ILE framework, it does not
provide detailed information on RPG IV specifications and operations. For a
detailed description of the language, see the ILE RPG/400 Reference SC09-1526.

Before using this guide, you should

« Know how to use applicable AS/400 menus and displays or Control Language
(CL) commands.

 Have the appropriate authority to the CL commands and objects described
here.

« Have a firm understanding of ILE as described in detail in the ILE Concepts,
SC41-3606.

xiii



XiV  ILE RPG/400 Programmer's Guide




ILE RPG/400 Introduction

Before using ILE RPG/400 to create a program, you must know certain aspects of
the environment in which you will be using it. This part provides information on the

following topics that you should know:
¢ Overview of RPG IV language
» Role of ILE components in RPG programming

« ILE program creation strategies

© Copyright IBM Corp. 1994



2 ILE RPG/400 Programmer's Guide




RPG IV Overview

Chapter 1. Overview of the RPG IV Programming Language

This chapter presents a high-level review of the features of the RPG IV program-
ming language that distinguish RPG from other programming languages. You
should be familiar and comfortable with all of these features before you program in
the RPG IV language. The features discussed here encompass the following
subjects:

¢ Coding specifications
¢ The program cycle

¢ |ndicators
¢ QOperation codes

For more information on RPG |V, see ILE RPG/400 Reference.

RPG IV Specifications

RPG code is written on a variety of specification forms, each with a specific set of
functions. Many of the entries which make up a specification type are position-
dependent. Each entry must start in a specific position depending on the type of
entry and the type of specification.

There are six types of RPG IV specifications. Each specification type is optional.
Specifications must be entered into your source program in the order shown below.

1. Control specifications provide the compiler with information about generating

and running programs, such as the program name, date format, and use of
alternate collating sequence or file translation.

2. File description specifications describe all the files that your program uses.
3. Definition specifications describe the data used by the program.

4. Input specifications describe the input records and fields used by the
program.

5. Calculation specifications describe the calculations done on the data and the
order of the calculations. Calculation specifications also control certain input
and output operations.

6. Output specifications describe the output records and fields used by the
program.

Cycle Programming

© Copyright IBM Corp. 1994

When a system processes data, it must do the processing in a particular order.
This logical order is provided by:

¢ The RPG/400 compiler
* Your program code.

The logic the compiler supplies is called the program cycle. When you let the
compiler provide the logic for your programs, it is called cycle programming.



RPG IV Overview

{ Start —2

The program cycle is a series of steps that your program repeats until an end-of-file
condition is reached. Depending on the specifications you code, the program may
or may not use each step in the cycle.

If you want to have files controlled by the cycle, the information that you code on
RPG specifications in your source program need not specify when records for these
files are read. The compiler supplies the logical order for these operations, and
some output operations, when your source program is compiled.

If you do not want to have files controlled by the cycle, you must create an end-of-
file condition, usually by setting on the last record (LR) indicator.

Figure 1 shows the specific steps in the general flow of the RPG program cycle.

Write . Perform
. Get input R
heading and total
-~ record )
detail lines calculations

Perform
detail
calculations

No Write
< Move fields [ 1 total
output

Yes

End of
program

Figure 1. RPG Program Logic Cycle

4

OE B O DN

[~

RPG processes all heading and detail lines (H or D in position 17 of the
output specifications).

RPG reads the next record and sets on the record identifying and control
level indicators.

RPG processes total calculations (conditioned by control level indicators L1
through L9, an LR indicator, or an LO entry).

RPG processes all total output lines (identified by a T in position 17 of the
output specifications).

RPG determines if the LR indicator is on. If it is on, the program ends.

The fields of the selected input records move from the record to a proc-
essing area. RPG sets on field indicators.

RPG processes all detail calculations (not conditioned by control level indica-
tors in positions 7 and 8 of the calculation specifications). It uses the data
from the record at the beginning of the cycle.

ILE RPG/400 Programmer's Guide



RPG IV Overview

The first cycle

The first and last time through the program cycle differ somewhat from other cycles.
Before reading the first record the first time through the cycle, the program does
three things:

» handles input parameters, opens files, initializes program data
o writes the records conditioned by the 1P (first page) indicator
o processes all heading and detail output operations.

For example, heading lines printed before reading the first record might consist of
constant or page heading information, or special fields such as PAGE and *DATE.
The program also bypasses total calculations and total output steps on the first
cycle.

The last cycle

The last time a program goes through the cycle, when no more records are avail-
able, the program sets the LR (last record) indicator and the L1 through L9 (control
level) indicators to on. The program processes the total calculations and total
output, then all files are closed, and then the program ends.

Indicators

An indicator is a one-byte character field that is either set on ('1") or off ('0). Each
indicator has a two-character name (for example, LR, 01, H3), and is referred to in
some entries of some specifications just by the two-character name, and in others
by the special name *INxx where xx is the two-character name. An indicator is
either the result of an operation or is used to condition (or control) the processing of
an operation. Indicators are like switches in the flow of the program logic. They
determine the path the program will take during processing, depending on how they
are set.

You can use several types of indicators; each type signals something different. In
an RPG program, indicators are defined either by making entries on the specifica-
tions or by the RPG program cycle itself. The positions on the specification in
which you define an indicator determine the use of the indicator. Once you define
an indicator in your program, it can limit or control calculation and output oper-
ations.

An RPG program sets and resets certain indicators at specific times during the

program cycle. In addition, the state of indicators can be changed explicitly in cal-
culation operations.

Chapter 1. Overview of the RPG IV Programming Language 5



Example of an ILE RPG/400 Program

Operation Codes

The RPG IV programming language allows you to do many different types of oper-
ations on your data. Operation codes, entered on the calculation specifications,
indicate what operations will be done. For example, if you want to read a new
record, you could use the READ operation code. The following is a list of the types
of operations availabie.

Arithmetic operations Indicator-setting operations
Array operations Information operations

Bit operations Initialization operations
Branching operations Message operation

Call operations Move operations

Compare operations String operations

Data-Area operations Structured programming operations
Date/Time/Timestamp operations Subroutine operations

Declarative operations Test operations

File operations

Example of an ILE RPG/400 Program

This section illustrates a simple ILE RPG/400 program that performs payroll calcu-
lations.

Problem Statement

The payroll department of a small company wants to create a print output that lists
employees' pay for that week. Assume there are two disk files, EMPLOYEE and
TRANSACT, on the system.

The first file, EMPLOYEE, contains employee records. The figure below shows the
format of an employee record:

EMP_REC

EMP_NUMBER| EMP_NAME EMP_RATE

1 6 22 27

L S e T T S O SRR R - P Y AR

Acoooooiii, T.Name++++++RLen++TDpB...... Functions+t+++ttttttttttttttts
A R EMP_REC

A EMP_NUMBER 5 TEXT('EMPLOYEE NUMBER')

A EMP_NAME 16 TEXT('EXPLOYEE NAME')

A EMP_RATE 5 2 TEXT('EXPLOYEE RATE')

A K EMP_NUMBER

Figure 2. DDS for Employee physical file

6 ILE RPG/400 Programmer's Guide



Example of an ILE RPG/400 Program

The second file, TRANSACT, tracks the number of hours each employee worked
for that week and any bonus that employee may have received. The figure below
shows the format of a transaction record:

TRN_REC

TRN_NUMBER TRN_HOURS | TRN_BONUS

L A T R T RS . R R T P A

Acvvvaean, T.Name++++++RLen++TDpB...... Functions++++tttttttttttttttts
A R TRN_REC

A TRN_NUMBER 5 TEXT('EMPLOYEE NUMBER')

A TRN_HOURS 4 1 TEXT('HOURS WORKED')

A TRN_BONUS 6 2 TEXT('BONUS"')

Figure 3. DDS for TRANSACT physical file

Each employee's pay is calculated by multiplying the "hours" (from the TRANSACT
file) and the "rate" (from the EMPLOYEE file) and adding the "bonus" from the
TRANSACT file.

Control Specifications

N R A U BEPI UE S TR T R SIS I A T
HKeywords+++t+ttttttttttttttttttttttttt bttt bbbt bbb bbb e

H DATEDIT(*DMY/)

Today's date will be printed in day, month, year format with "/* as the separator.

File Description Specifications

E P R SN . SEPI SSPUY PRV AP, SRR SRR ¢ RETT. O A T
FFilename++IPEASFR1en+LKTen+AIDevice+.Keywords+++++++ttttttttttttttrtt+++

FTRANSACT IP E K DISK
FEMPLOYEE IF E K DISK
FQSYSPRT 0 F 80 PRINTER

There are three files defined on the File Description Specifications:

* The TRANSACT file is defined as the Input Primary file. The ILE RPG/400
program cycle controls the reading of records from this file.

* The EMPLOYEE file is defined as the Input Full-Procedure file. The reading of
records from this file is controlled by operations in the Calculation Specifica-
tions.

e The QSYSPRT file is defined as the Output Printer file.

Chapter 1. Overview of the RPG IV Programming Language 7



Example of an ILE RPG/400 Program

Definition Specifications

R SRS A R T ST A PN SN S S T AR S
D+Name++++++++++ETDsFrom+++To/L+++1Dc. Keywords++++++++ttttttttttttt+4

D Pay S 8P 2

D Headingl C "NUMBER NAME RATE H-
D OURS  BONUS PAY '

D Heading2 C ! _-
D 1

Using the Definition Specifications, declare a variable called "Pay" to hold an
employees' weekly pay and two constants "Heading1" and "Heading2" to aid in the
printing of the report headings.

Calculation Specifications

R T R T R O S U TPUUE T . S Y SRS
CLON®1Factorl+++++++Opcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq. .

C  TRN_NUMBER  CHAIN  EMP_REC 99
C IF NOT *IN99

c EVAL (H) Pay = EMP_RATE * TRN_HOURS + TRN_BONUS
C ENDIF

The coding entries on the Calculation Specifications include:

» Using the CHAIN operation code, the field TRN_NUMBER from the transaction
file is used to find the record with the same employee number in the employee
file.

* If the CHAIN operation is successful (that is, indicator 99 is off), the pay for that
employee is evaluated. The result is "rounded" and stored in the variable
called Pay.

8 ILE RPG/400 Programmer's Guide



Example of an ILE RPG/400 Program

Output Specifications

*. . 1...+...2...+...3...+...4...+...5...+...6...+...7...+...
OFilename++DF..NOINO2NO3EXCcham++++B++A++Sb+Sa+. .. ovvei i,
Overernnnnnnnns NOLINO2NO3Field+++++++++YB. End++PConstant/editword/DTformat
0QSYSPRT H 1P 2 3

0 35 'PAYROLL REGISTER'

0 *DATE Y 60

0 H 1P 2

0 60 Headingl

0 H 1P 2

0 60 Heading2

0 D  NIPN99 2

0 TRN_NUMBER 5

0 EMP_NAME 24

0 EMP_RATE L 33

0 TRN_HOURS L 40

0 TRN_BONUS L 49

0 Pay 60 '$ 0. '

0 D NIP 99 2

0 TRN_NUMBER 5

0 35 'x%x NOT ON EMPLOYEE FILE #='
0 T LR

0 33 'END OF LISTING'

The Output Specifications describe what fields are to be written on the QSYSPRT
output:

« The Heading Lines that contain the constant string 'PAYROLL REGISTER' as
well as headings for the detail information will be printed if indicator 1P is on.
Indicator 1P is turned on by the ILE RPG/400 program cycle during the first
cycle.

e The Detail Lines are conditioned by the indicators 1P and 99. Detail Lines are
not printed at 1P time. The N99 will only allow the Detail lines to be printed if
indicator 99 is off, which indicates that the corresponding employee record has
been found. If the indicator 99 is on, then the employee number and the con-
stant string "* NOT ON EMPLOYEE FILE **' will be printed instead.

o The Total Line contains the constant string 'END OF LISTING'. It will be
printed during the last program cycle.

Chapter 1. Overview of the RPG IV Programming Language 9



Example of an ILE RPG/400 Program

10

The Entire Source Program
The following figure combines all the specifications used in this program. This is
what you should enter into the source file for this program.

K e e e e e e e e e o e e e *
* DESCRIPTION: This program creates a printed output of employee's pay =*
* for the week. *
K e e e e e e e e e e o o o o e *

K o e e e e e e e e e e e e o o o e o *
* File Definitions *
K e e e e e e e e e e e e e e e o e o o e ot o e *
FTRANSACT IP E K DISK

FEMPLOYEE IF E K DISK

FQSYSPRT 0 F 80 PRINTER

K e e e e e e e e e e e e e e e e e o o e *
* Variable Declarations *
K e e e e e e e e e e e e e e e e o o e o o o *
D Pay S 8P 2

K e e e e e e e e e e e e e e e e e e e e e o o o e e e e *
* Constant Declarations *
K o e e e e e e e e e e e e e o o o e o *
D Headingl C "NUMBER  NAME RATE H-
D OURS  BONUS PAY !
D Heading2 C ' -
D T |

R e o e e e e e e e e e e e e e o e o e e e *
* For each record in the transaction file (TRANSACT), if the employee *

* is found, compute the employees pay and print the details. *
K o e e e e e e e e e e e o e e e e e e o o e o e *
C TRN_NUMBER CHAIN EMP_REC 99
C IF NOT *IN99
C EVAL (H) Pay = EMP_RATE * TRN_HOURS + TRN_BONUS
C ENDIF

Figure 4 (Part 1 of 2). A Sample Payroll Calculation Program

ILE RPG/400 Programmer's Guide




Example of an ILE RPG/400 Program

K o o *
* Report Layout *
* -- print the heading lines if 1P is on *
* -- if the record is found (indicator 99 is off) print the payroll *
* details otherwise print an exception record *
* == print '"END OF LISTING' when LR is on *
K o T *

OQSYSPRT H 1P 2 3

0 35 '"PAYROLL REGISTER'

0 *DATE Y 60

0 H 1p 2

0 60 Headingl

0 H 1P 2

0 60 Heading2

0 D  NIPN99 2

0 TRN_NUMBER 5

0 EMP_NAME 24

0 EMP_RATE L 33

0 TRN_HOURS L 40

0 TRN_BONUS L 49

0 Pay 60 '$ 0. '

0 D N1P 99 2

0 TRN_NUMBER 5

0 35 'x% NOT ON EMPLOYEE FILE '

0 T LR

0 33 'END OF LISTING'

Figure 4 (Part 2 of 2). A Sample Payroll Calculation Program

Chapter 1. Overview of the RPG IV Programming Language 11



Using the 0S/400 System

Using the 0S/400 System

The operating system that controls all of your interactions with the AS/400 system
is called the Operating System/400 (OS/400) system. From your workstation, the
0S/400 system allows you to:

 Sign on and sign off

* Interact with the displays

* Use the online help information

» Enter control commands and procedures
* Respond to messages

* Manage files

* Run utilities and programs.

Refer to the Publications Ordering, SC41-3000 for a complete list of publications
that discuss the OS/400 system.

Interacting with the System
You can manipulate the OS/400 system using Command Language (CL). You
interact with the system by entering or selecting CL commands. The AS/400
system often displays a series of CL commands or command parameters appro-
priate to the situation on the screen. You then select the desired command or
parameters.

Commonly Used Control Language Commands
The following table lists some of the most commonly used CL commands, their
function, and the reasons you might want to use them.

Table 1. Commonly Used CL Commands
Action CL command Result
Using System Menus GO MAIN Display main menu
GO INFO Display help menu
GO CMDRPG List commands for RPG
GO CMDCRT List commands for creating
GO CMDxxx List commands for 'xxx'
Calling CALL program-name Runs a program
Compiling CRTxxxMOD Creates xxx Module
CRTBNDxxx Creates Bound xxx Program
Binding CRTPGM Creates a program from ILE
modules
CRTSRVPGM Creates a service program
UPDPGM Updates a bound program object
Debugging STRDBG Starts ILE source debugger
ENDDBG Ends ILE source debugger
Creating Files CRTPRTF Creates Print File
CRTPF Creates Physical File
CRTSRCPF Creates Source Physical File
CRTLF Creates Logical File

ILE RPG/400 Programmer's Guide




AS/400 Tools

AS/400 Tools

The AS/400 system offers a full set of tools that you may find useful for program-
ming. The following products are available to help you develop ILE RPG/400 appli-
cations more effectively. See “Bibliography” on page 371 for the publications
associated with these products.

Application Development Toolset/400 (ADTS/400)

The Application Development Toolset/400 (ADTS/400) provides an integrated suite
of host-based tools designed to meet the needs of the application developer. This
product provides tools for manipulating source, objects, and database files on the
AS/400 system. Some of the tools provided are: PDM, SEU, and SDA. A menu
driven interface is available from which you can perform all of the tasks involved in
application development, such as object management, editing, compiling and
debugging.

Application Development Manager/400

The Application Development Manager/400 provides application development
organizations with a mechanism for efficient and effective management of applica-
tion objects throughout the life of the application. This feature allows a group of
developers to create, manage, and organize multiple versions of their application
through the Programming Development Manager (PDM) interface or directly from
the AS/400 command line.

CoOperative Development Environment/400
The CoOperative Development Environment/400 (CODE/400) enhances program
development and moves the program development workload off the host. For RPG
application development and maintenance, CODE/400 provides:

language sensitive editing— includes token highlighting, format lines, a full suite
of prompts, and online help.

incremental syntax checking— provides immediate error feedback as each line
of source is entered

program verification— performs, at the workstation, the full range of syntax and
semantic checking that the compiler does, without generating object code

an OS/2* interface for submitting host compiles and binds

source-level debugging

a DDS design utility—allows you to easily change screens, reports, and data-
base files

access to Application Development Manager/400.

Chapter 1. Overview of the RPG IV Programming Language 13



AS/400 Tools

14 ILE RPG/400 Programmer's Guide




RPG Programming in ILE

Chapter 2. RPG Programming in ILE

ILE RPG/400 is an implementation of the RPG IV programming language in the
Integrated Language Environment. It is one of the family of ILE compilers available
on the AS/400 system.

ILE is a new approach to programming on the AS/400 system. It is the result of
major enhancements to the AS/400 machine architecture and the OS/400 operating
system. The ILE family of compilers includes: ILE RPG/400, ILE C/400%, ILE
COBOL/400*, and ILE CL. Figure 5 depicts the ILE enhancement to the operating
system in support of the ILE languages. It shows that support for the original
program model (OPM) and extended program model (EPM) languages is retained.

— 0S/400
7~ Integrated Language - - Original Program Model-~  — Extended Program —
i Environment (ILE) | (OPM) I Model (EPM)
|
l L |
|
; RPG 1| RPG | Pascal
| | : |
| | | !
| | | ;
i COBOL i | | cosoL | FORTRAN
| o BASIC | |
| | | !
! CcL L cL i
| | |
| L i
| | | :
i c L Pw i
i o .
S B SR

Figure 5. Integrated Language Environment and its place in the Operating System

ILE provides RPG users with improvements or enhancements in the following areas
of application development:

Program creation

Program management

Program call

Source debugging

Bindable application program interfaces (APIs)

Each of the above areas is explained briefly in the following paragraphs and dis-
cussed further in the following chapters.

Program Creation
In ILE, program creation consists of

1. Compiling source code into modules
2. Binding (combining) one or more modules into a program object

You can create a program object much like in the OPM framework with a one-step
process using the Create Bound RPG Program (CRTBNDRPG) command. This

© Copyright IBM Corp. 1994 15



RPG Programming in ILE

16

command creates a temporary module which is then bound into a program object.
It also allows you to bind other objects through the use of a binding directory.

Alternatively, you may create a program using separate commands for compilation
and binding. This two-step process allows you to reuse a module or update one
module without recompiling the other modules in a program. In addition, because
you can combine modules from any ILE language, you can create and maintain
mixed-language programs.

In the two-step process, you create a module object using the Create RPG Module
(CRTRPGMOD) command. This command compiles the source statements into a
module object. A module is a nonrunnable object; it must be bound into a program
object to be run. To bind one or more modules together use the Create Program
(CRTPGM) command.

Modules can also be bound into a service program. Service programs are a means
of packaging callable routines (functions or procedures) into a separately bound
program object. The use of service programs provides modularity and maintain-
ability. They enable you to use off-the-shelf modules developed by third parties or,
conversely, to package your modules for third-party use. A service program is
created using the Create Service Program (CRTSRVPGM) command.

Figure 6 shows the two approaches to program creation.

RPG Source Specifications,
Externally-Described Files,

|

ILE HLL Modules, RPG Module
Service Programs (CRTRPGMOD)
ILE Program ILE Program
(CRTBNDRPG) (CRTPGM)
One-Step Process Two-Step Process

Figure 6. Program Creation in ILE

Once a program is created you can update the program using the UPDPGM or
UPDSRVPGM commands. This is useful, because it means you only need to have
the new or changed module objects available to update the program.

For more information on the one-step process, see Chapter 5, “Creating a Program
with the CRTBNDRPG Command” on page 37. For more information on the two-
step process, see Chapter 6, “Creating a Program with the CRTRPGMOD and
CRTPGM Commands” on page 49. For more information on service programs,
see Chapter 7, “Creating a Service Program” on page 63.

ILE RPG/400 Programmer's Guide




RPG Programming in ILE

Program Management

Program Call

ILE provides a common basis for managing program flow, sharing resources, and
handling language semantics during the run time of a program. For RPG users this
means that you can have much better control over resources than was previously
available.

ILE programs must be activated into activation groups, which are specified at
program creation time. Activation is the allocation of working storage within a job
so that one or more programs can run in that space. If the specified activation
group for a program does not exist when the program is called, then it is created
within the job to hold the program's activation.

An activation group is the key element in governing an ILE application's resources
and behavior. For example, you can scope commitment control operations to the
activation group level. You can also scope file overrides and shared open data
paths to the activation group of the running application. Finally, the behavior of a
program upon termination is also affected by the activation group in which the
program runs.

For more information on activation groups, see “Managing Activation Groups” on
page 79.

You can dynamically allocate storage for a runtime array using the bindable APIs
provided for all ILE programming languages. These APlIs allow single- and mixed-
language applications to access a central set of storage management functions and
offers a storage model to languages, such as RPG, that do not now provide one.

With ILE, you can write RPG applications where ILE RPG/400 programs and OPM
RPG/400 programs continue to interrelate through the traditional use of dynamic
program calls. Programs call other programs by using dynamic calls. They specify
the name of the called program on a CALL statement. The called program's name
is resolved to an address at run time, just before the calling program passes control
to the called program.

However, you can also write ILE applications which can interrelate with faster static
calls. Static calls involve calls between procedures. A procedure is a self-
contained set of code which performs a task and then returns to the caller. An ILE
RPG/400 module consists of one procedure. Because the procedure names are
resolved at bind time, (that is, when you create the program) static calls are faster
than dynamic calls.

Static calls also allow operational descriptors, omitted parameters, and allow a
greater number of parameters to be passed. (Omitted parameters are parameters
which serve as placeholders when no data is actually passed.) Operational
descriptors and omitted parameters can be useful when calling bindable APIs or
procedures written in other ILE languages. To enable procedure calls and the omit-
ting of parameters, RPG IV provides the CALLB operation.

For information on running a program refer to Chapter 8, “Running a Program” on

page 73. For information on program/procedure call, refer to Chapter 9, “Calling
Programs and Procedures” on page 91.

Chapter 2. RPG Programming in ILE 17



RPG Programming in ILE

Source Debugging

Bindable APIs

With ILE, you can perform source-level debugging on any single- or mixed-
language ILE application. You can control the flow of a program by using debug
commands while the program is running. You can set conditional and unconditional
breakpoints prior to running the program. Then after you call the program, you can
step through a specified number of statements, and display or change variables.
When a program stops because of a breakpoint, a step command, or a runtime
error, the pertinent module is shown on the display at the point where the program
stopped. At that point, you can enter more debug commands.

For information on the debugger, refer to Chapter 10, “Debugging Programs” on
page 113.

ILE offers a number of bindable APIs that can be used to supplement the function
currently offered by ILE RPG/400. The bindable APIs provide program calling and
activation capability, condition and storage management, math functions, and
dynamic screen management.

Some APIs which you may wish to consider using in an ILE RPG/400 application
include:

CEETREC — Signal the Termination-Imminent Condition
CEE4ABN — Abnormal End

CEEFRST — Free Storage

CEEGTST — Get Heap Storage

CEECZST — Reallocate Storage

CEEDOD — Decompose Operational Descriptor

For more information on these ILE bindable APIs, see Chapter 8, “Running a
Program” on page 73 and also the System API Reference.

18 ILE RPG/400 Programmer's Guide




OPM-Compatible Application

Chapter 3. Program Creation Strategies

There are many approaches you can take in creating programs using an ILE lan-
guage. This section presents three common strategies for creating ILE programs
using ILE RPG/400 or other ILE languages.

1. Create a program using CRTBNDRPG to maximize OPM compatibility.
2. Create an ILE program using CRTBNDRPG.
3. Create an ILE program using CRTRPGMOD and CRTPGM.

The first strategy is recommended as a temporary one. It is intended for users who
have OPM applications and who, perhaps due to lack of time, cannot move their
applications to ILE all at once. The second strategy can also be a temporary one.
It allows you time to learn more about ILE, but also allows you to immediately use
some of its features. The third strategy is more involved, but offers the most flexi-
bility.

Both the first and second strategy make use of the one-step program creation
process, namely, CRTBNDRPG. The third strategy uses the two-step program cre-
ation process, namely, CRTRPGMOD followed by CRTPGM.

Strategy 1: OPM-Compatible Application

Strategy 1 results in an ILE program which interacts well with OPM programs. It
allows you to take advantage of RPG IV enhancements, but not all of the ILE
enhancements. You may want such a program temporarily while you complete
your migration to ILE.

Method

Use the following general approach to create such a program:
1. Convert your source to RPG IV using the CVTRPGSRC command.

Be sure to convert all /COPY members which are used by the source you are
converting.

2. Create a program object using the CRTBNDRPG command, specifying
DFTACTGRP(*YES).

Specifying DFTACTGRP(*YES) means that the program object will run only in the
default activation group. (The default activation group is the activation group where
all OPM programs are run.) As a result, the program object will interact well with
OPM programs in the areas of override scoping, open scoping, and RCLRSC.

When you use this approach you cannot make use of ILE static binding. This
means that your program cannot contain a CALLB operation, nor can you use the
BNDDIR or ACTGRP parameters on the CRTBNDRPG command when creating
this program.

© Copyright IBM Corp. 1994 19



OPM-Compatible Application

Example of OPM-Compatible Program

Figure 7 shows the run-time view of a sample application where you might want an
OPM-compatible program. The OPM application consisted of a CL program and
two RPG programs. In this example, one of the RPG programs has been moved to
ILE; the remaining programs are unchanged.

20

— Job

“PGM(X)

.- Default Activation Group -------- .

OPM CL

~*PGM(Y)

A

ILE RPG

~*PGM(2)

OPM RPG

Figure 7. OPM-Compatible Application

Effect of ILE
The following deals with the effects of ILE on the way your application handles:

Program call

Data

Files

Errors

ILE RPG/400 Programmer's Guide

OPM programs behave as before. The system automatically
creates the OPM default activation group when you start your job,
and all OPM applications run in it. One program can call another
program in the default activation group by using a dynamic call.

Storage for static data is created when the program is activated,
and it exists until the program is deactivated. When the program
ends (either normally or abnormally), the program's storage is
deleted. To clean up storage for a program which returns without
ending, use the Reclaim Resource (RCLRSC) command.

File processing is the same as in previous releases. Files are
closed when the program ends normally or abnormally.

As in previous releases, the compiler handles errors within each
program separately. The errors you see that originated within your
program are the same as before. However, the errors are now
communicated between programs by the ILE condition manager,
so you may see different messages between programs. The mes-
sages may have new message IDs, so if your CL program moni-
tors for a specific message ID, you may have to change that ID.




ILE Program Using CRTBNDRPG

Related Information

Converting to RPG IV “Converting Your Source” on page 310

One-step creation process Chapter 5, “Creating a Program with the
CRTBNDRPG Command” on page 37

ILE static binding Chapter 9, “Calling Programs and Procedures” on

page 91; also ILE Concepts

Exception handling differences “Differences between OPM and ILE RPG/400
Exception Handling” on page 156

Strategy 2: ILE Program Using CRTBNDRPG

Method

Strategy 2 results in an ILE program which can take advantage of ILE static
binding. Your source can contain static procedure calls using CALLB because you
can bind the module to other modules or service programs using a binding direc-
tory. You can also specify the activation group in which the program will run.

Use the following general approach to create such a program:

1. If starting with RPG il source, convert your source to RPG IV using the
CVTRPGSRC command.

If converting, be sure to convert all /COPY members and any programs which
are called by the source you are converting. Also, if you are using CL to call
the program, you shouid aiso make sure that you are using iLE CL instead of
OPM CL.

2. Determine the activation group the program will run in.
You may want to name it after the application name, as in this example.

3. Identify the name of the binding directory, if any, to be used.

It is assumed with this approach that if you are using a binding directory, it is
one which is already created for you. For example, there may be a third-party
program to which you want to bind your source. Consequently, all you need to
know is the name of the binding directory.

4. Create an ILE program using CRTBNDRPG, specifying DFTACTGRP(*NO), the
activation group on the ACTGRP parameter, and the binding directory, if any,
on the BNDDIR parameter.

Note that if ACTGRP(*CALLER) is specified and this program is called by a
program running in the default activation group, then this program will behave
according to ILE semantics in the areas of override scoping, open scoping, and
RCLRSC.

The main drawback of this strategy is that you do not have a permanent module
object which you can later reuse to bind with other modules to create an ILE
program. Furthermore, any procedure calls must be to modules or service pro-
grams which are identified in a binding directory. If you want to bind two or more
modules without using a binding directory you need to use the third strategy.

Chapter 3. Program Creation Strategies 21



ILE Program Using CRTBNDRPG

Example of ILE Program Using CRTBNDRPG

Figure 8 shows the run-time view of an application in which an ILE CL program
calls an ILE RPG/400 program which is bound to a supplied service program. The
application runs in the named activation group XYZ.

22

— Job

-~ XYZ Activation Group ----------- -

*PGM(X)

|

ILE CL

A

{*PGM(Y)

ILE RPG

*S RVPGM(Z)l—

{ Supplied Service

Program

Figure 8. ILE Program Using CRTBNDRPG

Effect of ILE
The following deals with the effects of ILE on the way your program handles:

Program call

Data

Files

ILE RPG/400 Programmer's Guide

The system automatically creates the activation group if it does not
already exist, when the application starts.

The application can contain dynamic program calls or static proce-
dure calls. Procedures within bound programs call each other by
using static calls. Procedures call ILE and OPM programs by
using dynamic calls.

The lifetime of a program's storage is the same as the lifetime of
the activation group. Storage remains active until the activation
group is deleted.

The ILE RPG/400 run time manages data so that the semantics of
ending programs and reinitializing the data are the same as for
OPM RPG, although the actual storage is not deleted as it was
when an OPM RPG program ended. Data is reinitialized if the
previous call to the procedure ended with LR on, or ended abnor-
mally.

Program data which is identified as exported or imported (using
the keywords EXPORT and IMPORT respectively) is external to
the individual modules. It is known among the modules that are
bound into a program.

By default, file processing (including opening, sharing, overriding,
and commitment control) by the system is scoped to the activation
group level. You cannot share files at the data management level




ILE Program Using CRTBNDRPG

with programs in different activation groups. If you want to share a
file across activation groups, you must open it at the job level by
specifying SHARE(*YES) on an override command or create the
file with SHARE(*YES).

Errors When you call an ILE RPG program or procedure in the same acti-
vation group, if it gets an exception that would previously have
caused it to display an inquiry message, now your calling program
will see that exception first.

If your calling program has an error indicator or *PSSR, the
program or procedure that got the exception will end abnormally
without the inquiry message being displayed. Your calling program
will behave the same (the error indicator will be set on or the
*PSSR will be invoked).

When you call an OPM program or a program or procedure in a
different activation group, the exception handling will be the same
as in OPM RPG, with each program handling its own exceptions.
The messages you see may have new message IDs, so if you
monitor for a specific message ID, you may have to change that

ID.

Each language processes its own errors and can process the
errors which occur in modules written in another ILE language.

For example, RPG will handle any C errors if an error indicator has
been coded. C can handle any RPG errors.

Reiated information
Converting to RPG IV

One-step creation process

Activation groups
RCLRSC
ILE static binding

Exception handling differences

Override and open scope

“Converting Your Source” on page 310

Chapter 5, “Creating a Program with the
CRTBNDRPG Command” on page 37

“Managing Activation Groups” on page 79
“Reclaim Resources Command” on page 82

Chapter 9, “Calling Programs and Procedures” on
page 91; also ILE Concepts

“Differences between OPM and ILE RPG/400
Exception Handling” on page 156

“Overriding and Redirecting File Input and Output”
on page 197 and “Sharing an Open Data Path”
on page 201; also ILE Concepts

Chapter 3. Program Creation Strategies 23



ILE Application Using CRTRPGMOD

Strategy 3: ILE Application Using CRTRPGMOD

Method

This strategy allows you to fully utilize the concepts offered by ILE. However, while
being the most flexible approach, it is also more involved. This section presents
three scenarios for creating:

A single-language application
A mixed-language application
An advanced application

The effect of ILE is the same as described in “Effect of ILE” on page 22.

You may want to read about the basic ILE concepts in ILE Concepts before using
this approach.

Because this approach is the most flexible, it includes a number of ways in which
you might create an ILE application. The following list describes the main steps
which you may need to perform:

1. Create a module from each source member using the appropriate command,
for example, CRTRPGMOD for RPG source, CRTCLMOD for CL source, etc..

2. Determine the ILE characteristics for the application, for example:

e Determine which module will be the starting point for the application. The
module you choose as the entry module is the first one that you want to get
control. In an OPM application, this would be the command processing
program, or the program called because a menu item was selected.

» Determine the activation group the application will run in. (Most likely you
will want to run in a named activation group, where the name is based on
the name of the application.)

o Determine the exports and imports to be used.

3. Determine if any of the modules will be bound together to create a service
program. If so, create the service programs using CRTSRVPGM.

4. Bind the appropriate modules and service programs together using CRTPGM,
specifying values for the parameters based on the characteristics determined in
step 2.

An application created using this approach can run fully-protected, that is, within its
own activation group. Furthermore, it can be updated easily through use of the
UPDPGM or UPDSRVPGM commands. With these commands you can add or
replace one or more modules without having to re-create the program object.

24 |LE RPG/400 Programmer's Guide




ILE Application Using CRTRPGMOD

Single-Language ILE Application Scenario
In this scenario you compile multiple source files into modules and bind them into
one program which is called by an ILE RPG/400 program. Figure 9 shows the
run-time view of this application.

— Job

-~ XY Activation Group ----------=-------- .

“*PGM(X)

RPG

~*PGM(Y)
RPG *MODULE(Y1) | —

RPG *MODULE(Y2)

RPG *MODULE(Y3)

RPG *MODULE(Y4) |«

Figure 9. Single-Language Application Using CRTRPGMOD and CRTPGM

The call from program X to program Y is a dynamic call. The calls among the
modules in program Y are static calls.

See “Effect of ILE” on page 22 for details on the effects of ILE on the way your
application handles calls, data, files and errors.

Chapter 3. Program Creation Strategies 25



ILE Application Using CRTRPGMOD

Mixed-Language ILE Application Scenario
In this scenario, you create integrated mixed-language applications. The main
module, written in one ILE language, calls procedures written in another ILE lan-
guage. The main module opens files that the other modules then share. Because
of the use of different languages, you may not expect consistent behavior.
However, ILE ensures that this occurs.

Figure 10 shows the run-time view of an application containing a mixed-language
ILE program where one module calls a non-bindable APIl, QUSCRTUS (Create
User Space).

— Job
.~ Y Activation Group -----------soomooe ~
| ~*PGM(Y) |
CL *MODULE(Y1)

N

RPG *MODULE(Y2)

C "MODULE(Y3) .~ Default Activation Group ------- N
[ | ~*PGM(QUSCRTUS)———
RPG *MODULE(Y4) '

Figure 10. Mixed-Language Application

The call from program Y to the OPM API is a dynamic call. The calls among the
modules in program Y are static calls.

See “Effect of ILE” on page 22 for details on the effects of ILE on the way your
application handles calls, data, files and errors.

26 ILE RPG/400 Programmer's Guide




ILE Application Using CRTRPGMOD

Advanced Application Scenario
In this scenario, you take full advantage of ILE function, including service programs.
The use of bound calls, used for procedures within modules and service programs,
provide improved performance especially if the service program runs in the same
activation group as the caller.

Figure 11 shows an example in which an ILE program is bound to two service pro-

grams.
— Job
-~ XYZ Activation Group -------- === --mmmmmm oo N
| ~*PGM(X) !
CL *MODULE(X1)

[ *SRVPGM(Y) —

RPG *MODULE(X2) RPG

v

~+SRVPGM(2) ¥
C *MODULE(Z1)

CL *MODULE(Z2)

4

Figure 11. Advanced Application
The calls from program X to programs Y and Z are static calls.

See “Effect of ILE” on page 22 for details on the effects of ILE on the way your
application handles calls, data, files and errors.

Related Information

Two-step creation process Chapter 6, “Creating a Program with the
CRTRPGMOD and CRTPGM Commands” on page 49

Activation groups “Managing Activation Groups” on page 79

ILE static binding Chapter 9, “Calling Programs and Procedures” on
page 91; also ILE Concepts

Exception Handling Chapter 11, “Handling Exceptions” on page 153; also
ILE Concepts

Service programs Chapter 7, “Creating a Service Program” on page 63;

also ILE Concepts
Updating a Program “Using the UPDPGM Command” on page 59

Chapter 3. Program Creation Strategies 27



A Strategy to Avoid

A Strategy to Avoid

ILE provides many aiternatives for creating programs and applications. However,
not all are equally good. In general, you should avoid a situation where an applica-
tion consists of OPM and ILE programs which is split across the OPM default acti-
vation group and a named activation group. In other words, try to avoid the

scenario shown in Figure 12.

— Job

.~ Default Activation Group --------- )

*PGM(X)
cL

| PGM(Y)
RPG

| _*SRVPGM(2) |
RPG ?

Figure 12. Scenario to Avoid. An application is split between the OPM default activation
group and a named activation group.

When split across the default activation group and any named activation group, you
are mixing OPM behavior with ILE behavior. For example, programs in the default
activation group may be expecting the ILE programs to free their resources when
the program ends. However, this will not occur until the activation group ends.

Similarly, the scope of overrides and shared ODPs will be more difficult to manage
when an application is split between the default activation group and a named one.
By default, the scope for the named group will be at the activation group level, but
for the default activation group, it can be either call level or job level, not activation

group level.

28 ILE RPG/400 Programmer's Guide




Creating and Running an ILE RPG/400 Application

This section provides you with the information needed to create and run ILE
RPG/400 programs. It describes how to:

e Enter source statements

e Create modules

e Read compiler listings

e Create programs

» Create service programs

¢ Run programs

¢ Pass parameters

¢ Manage the run time

¢ Call other programs or procedures

Many ILE terms and concepts are discussed briefly in the following pages. These
terms and concepts are more fully discussed in ILE Concepts.

© Copyright IBM Corp. 1994 29



30 ILE RPG/400 Programmer's Guide




Chapter 4. Entering Source Statements

This chapter provides the information you need to enter RPG source statements. It
also briefly describes the tools necessary to complete this step.

To enter RPG source statements into the system, use one of the following
methods:

¢ Interactively using SEU
¢ Interactively using CODE/400

Initially, you may want to enter your source statements into a file called
QRPGLESRC. New members of the file QRPGLESRC automatically receive a
default type of RPGLE. Furthermore, the default source file for the ILE RPG/400
commands that create modules and bind them into program objects is
QRPGLESRC. IBM supplies a source file QRPGLESRC in library QGPL. It has a
record length of 112 characters.

Note: You can use mixed case when entering source. However, the ILE RPG/400
compiler will convert most of the source to uppercase when it compiles it. It
will not convert literals, array data or table data.

Creating a Library and Source Physical File

Source statements are entered into a member of a source physical file. Before you
can enter your program, you must have a library and a source physical file.

To create a library, use the CRTLIB command. To create a source physical, use
the Create Source Physical file (CRTSRCPF) command. The recommended record
length of the file is 112 characters. This record length takes into account the new
ILE RPG/400 structure as shown in Figure 13.

12 80 20
Seq. No. Code Comments
|« Minimum Record Length ————— |

(92 characters)

|« Recommended Record Length >
(112 characters)

Figure 13. ILE RPG/400 Record Length Breakdown

Since the system default for a source physical file is 92 characters, you should
specify a minimum record length of 112. If you specify a length less than 92 char-
acters, the program is not likely to compile since you will be truncating source code.

Note: If you are creating a file in a new library, you must create that library prior to
creating the source file.

For more information about creating libraries and source physical files, refer to
ADTS/400: Source Entry Utility and ADTS/400: Programming Development
Manager.

© Copyright IBM Corp. 1994 31



Using SEU

Using the Source Entry Utility (SEU)

You can use the Source Entry Utility (SEU) to enter your source statements. SEU
also provides prompting for the different specification templates as well as syntax
checking. To start SEU, use the STRSEU (Start Source Entry Utility) command.
For other ways to start and use SEU, refer to ADTS/400: Source Entry Utility.

If you name your source file QRPGLESRC, SEU automatically sets the source type
to RPGLE when it starts the editing session for a new member. Otherwise, you
have to specify RPGLE when you create the member.

If you need prompting after you type STRSEU, press F4. The STRSEU display
appears, lists the parameters, and supplies the default values. If you supply
parameter values before you request prompting, the display appears with those
values filled in.

In the following example you enter source statements for a program which will print
employee information from a master file. This example shows you how to:

e Create a library

» Create a source physical file
e Start an SEU editing session
e Enter source statements.

1. To create a library called MYLIB, type
CRTLIB LIB(MYLIB)

The CRTLIB command creates a library called MYLIB.

2. To create a source physical file called QRPGLESRC type

CRTSRCPF FILE(MYLIB/QRPGLESRC) RCDLEN(112)
TEXT('Source physical file for all RPG programs')

The CRTSRCPF command creates a source physical file QRPGLESRC in
library MYLIB.

3. To start an editing session and create source member EMPRPT type:

STRSEU SRCFILE(MYLIB/QRPGLESRC)
SRCMBR (EMPRPT)
TYPE(RPGLE) OPTION(2)

Entering OPTION(2) indicates that you want to start a session for a new
member. The STRSEU command creates a new member EMPRPT in file
QRPGLESRC in library MYLIB and starts an edit session.

The SEU Edit display appears as shown in Figure 14 on page 33. Note that
the screen is automatically shifted so that position 6 is (for specification type) is
at the left edge.

32 ILE RPG/400 Programmer's Guide




Using SEU

Columns . . . : 6 76 Edit MYLIB/QRPGLESRC

SEU==> EMPRPT

FMT H  HKeywords+t+tttttttttttttttttttttbt bbbttt bbbttt bbb
*xkwkgRRRkkxxx Beginning of data ** * *

*kkkkkkkkkkkkkkxkxx End of data * * kkokkkk ok *kk kK

F3=Exit  F4=Prompt F5=Refresh  F9=Retrieve  F10=Cursor
F16=Repeat find F17=Repeat change F24=More keys
Member EMPRPT added to file MYLIB/QRPGLESRC. +

Figure 14. Edit Display for a New Member

4. Type the following source in your SEU Edit display, using the following SEU
prefix commands to provide prompting:

» |PF — for File Description specifications
¢ |PI — for Input specifications

I=gy far Calnnilatinn enacifinratinne
n w vV wvairvuiatlwvii QPUUIIIUO\‘.IVl o

* |PCX — for Calculation specifications with extended Factor 2
¢ |IPO — for Output specifications
» |PP — for Output specifications continuation

F*****************************************************************

F+ MODULE NAME: EMPRPT *
F+ RELATED FILES: EMPMST  (PHYSICAL FILE) *
Fx PRINT (PRINTER FILE) *
F+ DESCRIPTION: THIS PROGRAM PRINTS EMPLOYEE INFORMATION *
Fx FROM THE FILE EMPMST. *
Feok ok ok e ook ok e ook e oo e oo ke Rk ek ok ko kR ok kb ok kR Rk ko kR ok k ok
FQSYSPRT 0 F 80 PRINTER

FEMPMST IP E K DISK

D TYPE S 8

Figure 15 (Part 1 of 2). Source for EMPRPT member

Chapter 4. Entering Source Statements 33



Using DB2/400 SQL Statements

TEMPREC 01

C IF ETYPE = 'M'

C EVAL TYPE = "MANAGER'

C ELSE

C EVAL TYPE = 'REGULAR'

C ENDIF

OQSYSPRT H 1P 2 6

0 50 'EMPLOYEE INFORMATION'
0 H 1P

0 12 'NAME'

0 34 'SERIAL #'
0 45 'DEPT!

0 56 'TYPE'

0 D 01

0 ENAME 20

0 ENUM 32

0 EDEPT 45

0 TYPE 60

Figure 15 (Part 2 of 2). Source for EMPRPT member

5. Press F3 (Exit) to go to the Exit display. Type Y (Yes) to save EMPRPT.
The member EMPRPT is saved.

Figure 16 shows the DDS which is referenced by the EMPRPT source.

A************'k**********************************************‘k‘k****
Ax DESCRIPTION: This is the DDS for the physical file EMPMST. =*
Ax It contains one record format called EMPREC. *
Ax This file contains one record for each employee *
Ax of the company. *
A*****************************************************************
Ax

A R EMPREC

A ENUM 5 0 TEXT('EMPLOYEE NUMBER')

A ENAME 20 TEXT('EMPLOYEE NAME')

A ETYPE 1 TEXT('EMPLOYEE TYPE')

A EDEPT 30 TEXT('EMPLOYEE DEPARTMENT')
A ENHRS 31 TEXT('EMPLOYEE NORMAL WEEK HOURS')
A K ENUM

Figure 16. DDS for EMPRPT

To create a program from this source using the CRTBNDRPG command, see “Cre-
ating an OPM-Compatible Program Object” on page 39.

Using DB2/400 SQL Statements

The DB2* for OS/400 database can be accessed from an ILE RPG/400 program by
embedding SQL statements into your program source. Use the following rules to
enter your SQL statements:

e Enter your SQL statements on the Calculation specification
 Start your SQL statements using the delimiter /EXEC SQL in positions 7-15
(with the / in position 7)

34 ILE RPG/400 Programmer's Guide




e You can start entering your SQL statements on the same line as the starting
delimiter

¢ Use the continuation line delimiter (a + in position 7) to continue your state-
ments on any subsequent lines

» Use the ending delimiter /END-EXEC in positions 7-15 (with the slash in posi-
tion 7) to signal the end of your SQL statements.

Note: SQL statements cannot go past position 80 in your program.

Figure 17 shows an example of embedded SQL statements.

C (ILE RPG/400 calculation operations)

C/EXEC SQL (the starting delimiter)

C+

C+ (continuation lines containing SQL statements)
C+

C/END-EXEC (the ending delimiter)

C

C (ILE RPG/400 calculation operations)
C

Figure 17. SQL Statements in an ILE RPG/400 Program

You must enter a separate command to process the SQL statements. Refer to the
DB2/400 SQL Programming and the DB2/400 SQL Reference for more information.

Refer to the ADTS/400: Source Entry Utility for information about how SEU handles
SQL statement syntax checking.

Including Graphic Data in Programs

Full support is now provided for graphic data type (G) fields in the RPG IV lan-
guage. See the ILE RPG/400 Reference for details on ILE RPG/400 graphic
support.

Chapter 4. Entering Source Statements 35



36 ILE RPG/400 Programmer's Guide




Using the CRTBNDRPG Command

Chapter 5. Creating a Program with the CRTBNDRPG

Command

This chapter shows how to create an ILE program using RPG IV source with the
Create Bound RPG Program (CRTBNDRPG) command. With this command you
can create one of two types of ILE programs:

¢ OPM-compatible program with no static binding
¢ Single-module ILE program with static binding

Whether you obtain a program of the first type or the second type depends on
whether the DFTACTGRP parameter of CRTBNDRPG is set to *YES or *NO
respectively.

Creating a program of the first type produces a program which behaves like an
OPM program in the areas of open scoping, override scoping, and RCLRSC. This
high degree of compatibility is due in part to its running in the same activation
group as OPM programs, namely, in the default activation group.

However, with this high compatibility comes the inability to have static binding.
Static binding refers to the ability to call procedures (in other modules or service
programs) and to use procedure pointers. In other words, you cannot use the
CALLB operation in your source nor can you bind to other modules during program
creation.

Creating a program of the second type produces a program with ILE characteristics
such as static binding. You can specify at program creation time the activation
group the program is to run in, and any modules for static binding. In addition, you
can use CALLB in your source.

Using the CRTBNDRPG Command

© Copyright IBM Corp. 1994

The Create Bound RPG (CRTBNDRPG) command creates a program object from
RPG IV source in one step. It also allows you to bind in other modules or service
programs using a binding directory.

The command starts the ILE RPG/400 compiler and creates a temporary module
object in the library QTEMP. It then binds it into a program object of type *PGM.
Once the program object is created, the temporary module used to create the
program is deleted.

The CRTBNDRPG command is useful when you want to create a program object
from standalone source code (code that does not require modules to be bound
together), because it combines the steps of creating and binding. Furthermore, it
allows you to create an OPM-compatible program.

Note: If you want to keep the module object in order to bind it with other modules
into a program object, you must create the module using the CRTRPGMOD
command. For more information see Chapter 6, “Creating a Program with
the CRTRPGMOD and CRTPGM Commands” on page 49.

37



Using the CRTBNDRPG Command

You can use the CRTBNDRPG command interactively, in batch, or from a
Command Language (CL) program. If you are using the command interactively
and require prompting, type CRTBNDRPG and press F4 (Prompt). If you need
help, type CRTBNDRPG and press F1 (Help).

Table 2 summarizes the parameters of the CRTBNDRPG command and shows
their default values.

Table 2. CRTBNDRPG Parameters and Their Default Values Grouped by Function

Program Identification

PGM(*CURLIB/*CTLSPEC)
SRCFILE(*LIBL/QRPGLESRC)
SRCMBR(*PGM)
TEXT(*SRCMBRTXT)

Determines created program name and library
Identifies source file and library

Identifies file member containing source specifications
Provides brief description of program.

Program Creation

GENLVL(10)
OPTION(*GEN)
DBGVIEW(*STMT)
OPTIMIZE(*NONE)
REPLACE(*YES)
BNDDIR(*NONE)
USRPRF(*USER)
AUT(*LIBCRTAUT)
TGTRLS(*CURRENT)

Conditions program creation to error severity (0-20).
*GEN/*"NOGEN, determines if program is created.

Specify type of debug view, if any, to be included in program.
Determine level of optimization, if any.

Determine if program should replace existing program.
Specify the binding directory to be used for symbol resolution.
Specify the user profile that will run program.

Specify type of authority for created program

Specify the release level the object is to be run on.

Compiler Listing

OUTPUT(*PRINT)
INDENT(*NONE)

OPTION(*XREF *NOSECLVL
*SHOWCPY *EXPDDS *EXT)

Determine if there is a compiler listing.

Determine if indentation should show in listing, and identify character for
marking it.

Specify contents of compiler listing.

Data Conversion Options

CVTOPT(*NONE)
ALWNULL(*NO)
FIXNBR(*NONE)

Specify how various data types from externally-described files are handled.
Determine if the program will accept values from null-capable fields.
Determine if invalid zoned decimal data is to be fixed upon conversion to
packed data.

Run-Time Considerations

DFTACTGRP(*YES)

ACTGRP(QILE)
SRTSEQ(*HEX)
LANGID(*JOBRUN)
TRUNCNBR(*YES)

Identify whether this program always runs in the OPM default

activation group.

Identify the activation group the program should run in.

Specify the sort sequence table to be used.

Used with SRTSEQ to specify the language identifier for sort sequence.
Specify action to take when numeric overflow occurs.

See Appendix C, “The Create Commands” on page 333 for the syntax diagram
and parameter descriptions of CRTBNDRPG.

38 ILE RPG/400 Programmer's Guide




Using the CRTBNDRPG Command

Creating an OPM-Compatible Program Object
In this example you use the CRTBNDRPG command to create an OPM-compatible
program object from the source for EMPRPT, shown in Figure 15 on page 33.

1. To create the object, type:

CRTBNDRPG PGM(MYLIB/EMPRPT)
SRCFILE (MYLIB/QRPGLESRC)
TEXT('ILE RPG/400 program') DFTACTGRP(*YES)

The CRTBNDRPG command creates the program EMPRPT in MYLIB which
will run in the default activation group. By default, a compiler listing is
produced.

Note: The setting of DFTACTGRP(*YES) is what provides the OPM compat-
ibility. This setting also prevents you from entering a value for the
ACTGRP and BNDDIR parameters. Furthermore, if the source con-
tained any CALLB operations an error would be issued and the compi-
lation would end.

2. Type one of the following CL commands to see the listing that is created:

¢ DSPJOB and then select option 4 (Display spooled files)
* WRKJOB

* WRKOUTQ queue-name

* WRKSPLF

Creating a Program for Source Debugging

In this example you create the program EMPRPT so that you can debug it using
CRTRPGMOD determines what type of debug data is created during compilation.
The parameter provides six options which allow you to select which view(s) you
want:

e *STMT — allows you to display variables and set breakpoints at statement
locations using a compiler listing. No source is displayed with this view.

e *SOURCE — creates a view identical to your input source.

* *COPY — creates a source view and a view containing the source of any
/COPY members.

e *LIST — creates a view similar to the compiler listing.

e *ALL — creates all of the above views.

¢ *NONE — no debug data is created.

The source for EMPRPT is shown in Figure 15 on page 33.
1. To create the object type:
CRTBNDRPG PGM(MYLIB/EMPRPT) DBGVIEW(*SOURCE)

The program will be created in the library MYLIB with the same name as the
source member on which it is based, namely, EMPRPT. Note that by default, it
will be created with DFTACTGRP(*YES). This program object can be
debugged using a source view.

2. To debug the program type:
STRDBG EMPRPT

Figure 18 on page 40 shows the screen which appears after entering the
above command.

Chapter 5. Creating a Program with the CRTBNDRPG Command 39



Using the CRTBNDRPG Command

40

Display Module Source

Program:  EMPRPT Library:  MYLIB Module:  EMPRPT

1 F * Fokkk ok ko ok

2 F* MODULE NAME: EMPRPT

3 F+ RELATED FILES: EMPMST  (PHYSICAL FILE)

4 Fx PRINT (PRINTER FILE)

5 F* DESCRIPTION: THIS PROGRAM PRINTS EMPLOYEE INFORMATION

6 F* FROM THE FILE EMPMST.

7 Ptk ok ok * * Feokkok ok ok ok

8 FQSYSPRT 0 F 80 PRINTER

9 FEMPMST IP E K DISK

10

11 D TYPE S 8

12

13 TEMPREC 01

14

15 C IF ETYPE = 'M'

More. ..

Debug . . .
F3=End program  F6=Add/Clear breakpoint F10=Step F11=Display variable
F12=Resume F13=Work with module breakpoints F24=More keys

Figure 18. Display Module Source display for EMPRPT

From this screen (the Display Module Source display) you can enter debug
commands to display or change field values and set breakpoints to control
program flow while debugging.

For more information on debugging see Chapter 10, “Debugging Programs” on
page 113.

Creating a Program with Static Binding
In this example you create a program COMPUTE using CRTBNDRPG to which you
bind a service program at program creation time.

Assume that you want to bind the program COMPUTE to services which you have
purchased to perform advanced mathematical computations. The binding directory
to which you must bind your source is called MATH. This directory contains the
name of a service program which contains the various procedures that make up the
services.

To create the object, type:

CRTBNDRPG PGM(MYLIB/COMPUTE)
DFTACTGRP(*NO) ACTGRP(GRP1) BNDDIR(MATH)

The source will be bound to the service program specified in the binding directory
MATH at program creation time. This means that calls to the procedures in the
service program will take less time than if they were dynamic calls.

When the program is called, it will run in the named activation group GRP1. The
default value ACTGRP parameter on CRTBNDRPG is QILE. However, it is recom-
mended that you run your application as a unique group to ensure that the associ-
ated resources are fully protected.

Note: DFTACTGRP must be set to *NO in order for you to enter a value for the
ACTGRP and BNDDIR parameters.

ILE RPG/400 Programmer's Guide




Using a Compiler Listing

For more information on service programs, see Chapter 7, “Creating a Service
Program” on page 63.

Using a Compiler Listing

This section discusses how to obtain a listing and how to use it to help you:

fix compilation errors
fix run-time errors
provide documentation for maintenance purposes.

See Appendix D, “Compiler Listings” on page 359 for more information on the dif-
ferent parts of the listing and for a complete sample listing.

Obtaining a Compiler Listing
To obtain a compiler listing specify OUTPUT(*PRINT) on either the CRTBNDRPG
command or the CRTRPGMOD command. (This is their default setting.) The
specification OUTPUT(*NONE) will suppress a listing.

Specifying OUTPUT(*PRINT) results in a compiler listing which consists minimally
of the following sections:

Prologue (command option summary)
Source Listing, which includes:
— In-Line diagnostic messages
— Match-field table (if using the RPG cycle with match fields)
Additional diagnostic messages
Field Positions in Output Buffer
/COPY Member Table
Compile Time Data which includes:
— Alternate Collating Sequence records and table or NLSS information and
table
— File translation records
— Array records
— Table records
Message summary
Final summary
Code generation report (appears only if there are errors)
Binding report (applies only to CRTBNDRPG; appears only if there are errors)

The following additional information is included in a compiler listing if the appro-
priate value is specified on the OPTION parameter of either create command:

*EXPDDS Specifications of externally-described files (appear in source section

of listing)

*SHOWCPY Source records of /COPY members (appear in source section of
listing)

*EXPDDS Key field information (separate section)

*XREF List of Cross references (separate section)

*EXT List of External references (separate section)

*SECLVL Second-level message text (appear in message summary section)

Chapter 5. Creating a Program with the CRTBNDRPG Command 41



Using a Compiler Listing

42

Note: Except for *SECLVL, all of the above values reflect the default settings on
the OPTION parameter for both create commands. You do not need to
change the OPTION parameter unless you do not want certain listing
sections or unless you want second level text to be included.

Customizing a Compiler Listing
You can customize a compiler listing by either customizing the page heading or by
customizing the spacing.

Customizing a Page Heading: The page heading information includes the
product information line and the title supplied by a /TITLE directive. The product
information line includes the ILE RPG/400 compiler and library copyright notice, the
member, and library of the source program, the date and time when the module
was created, and the page number of the listing.

You can specify heading information on the compiler listing through the use of the
/TITLE compiler directive. This directive allows you to specify text which will
appear at the top of each page of the compiler listing. This information will precede
the usual page heading information. If the directive is the first record in the source
member, then this information will also appear in the prologue section.

You can also change the date separator, date format, and time separator used in
the page heading and other information boxes throughout the listing. Normally, the
compiler determines these by looking at the job attributes. To change any of these,
use the Change Job (CHGJOB) command. After entering this command you can:

e Select one of the following date separators: *SYSVAL, *BLANK, slash (/),
hyphen (-) period (.) or comma (,)

¢ Select one of the following date formats: *SYSVAL, *YMD, *MDY, *DMY, or
*JUL

» Select one of the following time separators: *SYSVAL, *BLANK, colon (:),
comma (,) or period (.)

Anywhere a date or time field appears in the listing, these values are used.

Customizing the Spacing: Each section of a listing usually starts on a new page;
Each page of the listing starts with product information, unless the source member
contains a /TITLE directive. If it does, the product information appears on the
second line and the title appears on the first line.

You can control the spacing and pagination of the compiler listing through the use
of the /EJECT and /SPACE compiler directives. The /EJECT directive forces a
page break. The /SPACE directive controls line spacing within the listing. For
more information on these directives refer to the ILE RPG/400 Reference.

Indenting Structured Operations in the Compiler Listing

If your source specifications contain structured operations (such as DO-END or
IF-ELSE-END), you may want to have these indented in the source listing. The
INDENT parameter lets you specify whether to show indentation, and specify the
character to mark the indentation. If you do not want indentation, specify
INDENT(*NONE); this is the default. If you do want indentation, then specify up to
two characters to mark the indentation.

ILE RPG/400 Programmer's Guide




Using a Compiler Listing

For example, to specify that you want structured operations to be indented and
marked with a vertical bar (I) followed by a space, you specify INDENT('l ').

If you request indentation, then some of the information which normally appears in
the source listing is removed, so as to allow for the indentation. The following
columns will not appear in the listing:

e Do Num
¢ Last Update
e« PAGE/LINE

If you specify indentation and you also specify a listing debug view, the indentation
will not appear in the debug view.

Figure 19 shows part of source listing which was produced with indentation. The
indentation mark is 'l '.

Line <---mmmmmmmmmeeee o Source Specifications ===--=-m-mmmmm o e e ><---- Comments ----> Src Seq
Number ....l....#....2... +<=<<oeeem 26 - 35 —mmmmmme- > b e Bt B b T8+ 0900+, 10 Td Number
33C 000000 002000
34 Cx  MAINLINE * 000000 002100
35 C 000000 002200
36 C WRITE FOOT1 002300
37 ¢ WRITE HEAD 002400
38 C EXFMT PROMPT 002500
39 C* 000000 002600
40 C DOW NOT *INO3 002700
41 C CSTKEY SETLL CMLREC2 ----20 002800
42 C IF *INO2 002900
43 C | MOVE e *IN61 003000
4 C ELSE 003100
45 C | EXSR SFLPRC 003200
46 C END 003300
47 C IF NOT *INO3 003400
48 C | 1F *INO4 003500
49 C | 1F *IN61 003600
50 C | | | wRITE FOOTL 003700
51 C | | | wRITE HEAD 003800
52 C | | enpIF 003900
53 C | | ExFmr PROMPT 004000
54 C | EnpIF 004100
55 C ENDIF 004200
56 C ENDDO 004300
57 C* 000000 004400
58 C SETON LR---- 004500

Figure 19. Sample Source Part of the Listing with Indentation

Correcting Compilation Errors

The main sections of a compiler listing that are useful for fixing compilation errors
are:

e The source section

¢ The Additional Messages section
¢ The /COPY table section

» The various summary sections.

In-line diagnostic messages, which are found in the source section, point to errors
which the compiler can flag immediately. Other errors are flagged after additional
information is received during compilation. The messages which flag these errors
are in the source section and Additional Messages section.

Chapter 5. Creating a Program with the CRTBNDRPG Command 43



Using a Compiler Listing

To aid you in correcting any compilation errors, you may want to include the
second-level message text in the listing — especially if you are new to RPG. To do
this, specify OPTION(*SECLVL) on either create command. This will add second-
level text to the messages listed in the message summary.

Finally, keep in mind that a compiler listing is a record of your program. Therefore,
if there are any errors, you can use the listing to check that the source is coded the
way you intended it to be. Parts of the listing, besides the source statements,
which you may want to check include:

¢ Match field table

If you are using the RPG cycle with match fields, then you can use this to
confirm that the compiler is recognizing them as intended.

e Offset-defined output fields

Lists the start and end positions along with the literal text or field names. Use
this to confirm that the compiler is recognizing the input as intended.

e Compile-time data

ALTSEQ and FTRANS records and tables are listed. NLSS information and
tables are listed. Tables and arrays are explicitly identified. Use this to confirm
that the compiler is recognizing them as intended.

Using In-Line Diagnostic Messages

There are two types of in-line diagnostic messages: finger and non-finger. Finger
messages point out exactly where the error occurred. Figure 20 shows an
example of finger in-line diagnostic messages.

Number ....l... .+ . .20 kb 3ok A b LB kb T8+ 90+, 10 Num Line  Date Id  Number

63 C SETOFF 2 003100
======> aabb
======> ccee

*RNF5051 30 a Resulting-Indicator entry is not valid; defaults to blanks.
*RNF5051 30 b Resulting-Indicator entry is not valid; defaults to blanks.
*RNF5053 30 ¢ Resulting-Indicators entry is blank for specified operation.

Figure 20. Sample Finger In-Line Diagnostic Messages

In this example, an indicator has been incorrectly placed in positions 72 - 73
instead of 71 - 72 or 73 - 74. The three fingers 'aa’, 'bb', and 'cc' identify the parts
of the line where there are errors. The actual columns are highlighted with vari-
ables which are further explained by the messages. In this case, message
RNF5051 indicates that the fields marked by 'aa' and 'bb' do not contain a valid
indicator. Since there is no valid indicator the compiler assumes that the fields are
blank. However, since the SETOFF operation requires an indicator, another error
arises, as pointed out by the field 'cccc' and message RNF5053.

Errors are listed in the order in which they are found. As a general rule, you should
focus on correcting the first few errors found, rather than the later ones.

Non-finger in-line diagnostic messages also indicate errors. However, due to the
nature of the error, they cannot point to a specific location in the source; they can
only state a problem. Figure 21 on page 45 shows an example of the non-finger
in-line diagnostic messages.

44 |LE RPG/400 Programmer's Guide




Using a Compiler Listing

Ling  <emmmmmmmeeeeee o Source Specifications ---=-=------memmmmmommeoeee ><---- Comments ----> Do Page Change Src Seq

Number ....l....+.. .2 . 0+ 030 kA bbbl B bl Tkl 8l 90 4,1 L 10 Num Line  Date Id  Number
6 FINTERN IS F 72 DISK 12345 000600
7 FQSYSPRT 0 F 256 DISK 000700
8 FF7145A CT F 28 DISK 000800
9 FF7145B CT F 28 DISK 000900
10 F= 12345 100792 001000

*RNF2025 30 6 INTERN defaults to primary file.
11 DARRA S 28 FROMFILE(F7145A) TOFILE(F7145A) 001100

Figure 21. Sample Non-Finger In-Line Diagnostic Messages

In this example, there are several file specifications, one of which defines a sec-
ondary file, but there is no primary file defined. Because a primary file is required,
a message (RNF2025) is issued. The compiler cannot point to a particular line
which should define a primary file. It can only assume, once the next specification
section begins, that there is no such line.

Using Additional-Diagnostic Messages

The Additional Diagnostic Messages section identifies errors which arise when one
or more lines of code are viewed collectively. These messages are not placed
within the code where the problem is; in general, the compiler does not know at the
time of writing that portion of the source that a problem exists. However, when
possible, the message line includes the listing statement number of a source line
which is related to the message.

Browsing a Compiler Listing Using SEU

The SEU Split/Browse session (F15) allows you to browse a compiler listing in the
output queue. You can review the results of a previous compilation while making
the required changes to your source code.

While browsing the compiler listing, you can scan for errors and correct those
source statements that have errors. To scan for errors, type F *ERR on the SEU
command line of the browse session. The line with the first (or next) error is high-
lighted and the first-level text of the same message appears at the bottom of the
screen. You can see the second-level text by placing your cursor on the message
at the bottom and then pressing F1 (Help).

When possible, the error messages in the listing identify the SEU sequence number
of the line in error. The line number is found just before the message text.

For complete information on browsing a compiler listing, see ADTS/400: Source
Entry Utility.

Correcting Run-time Errors

The source section of the listing is also useful for correcting run-time errors. Many
run-time error messages identify a statement number where the error in question
occurred. The line number on the left side of the compiler listing corresponds to
the statement number in the run-time error message. The source ID number and
the SEU sequence number on the right side of the compiler listing identifies the
source member and record. You can use the two together, especially if you are
editing the source using SEU, to determine which line needs to be examined.

Chapter 5. Creating a Program with the CRTBNDRPG Command 45



Using a Compiler Listing

Coordinating Listing Options with Debug View Options
Correcting run-time errors often involves debugging a program. The following con-
siderations may help you when you go to debug your program:

 If you use the source debugger to debug your program you have a choice of
debug views: *STMT, *SOURCE, *LIST, *COPY, *ALL.

« |f you plan to use a compiler listing as an aid while debugging, then you can
obtain one by specifying OUTPUT(*PRINT). A listing is important if you intend
to debug using a statement (*STMT) view since the line numbers for setting
breakpoints are those identified in the listing.

« If you know that you will have considerable debugging to do, you may want to
compile the source with DBGVIEW(*ALL), OUTPUT(*PRINT) and
OPTION(*SHOWCPY). This will allow you to use either a source or listing
view, and it will include /COPY members.

e If you specify DBGVIEW(*LIST), the information available to you while debug-
ging depends on what you specified for the OPTION parameter. The view will
include /COPY members and externally-described files only if you specify
OPTION(*SHOWCPY *EXPDDS).

Using a Compiler Listing for Maintenance
A compiler listing of an error-free program can be used as documentation when:

¢ teaching the program to a new programmer.
¢ updating the program at a later date.

In either case it is advisable to have a full listing, namely, one produced with
OUTPUT(*PRINT) and with OPTION(*XREF *SHOWCPY *EXPDDS *EXT). Note
that this is the default setting for each of these parameters for both create com-
mands.

Of particular value for program maintenance is the Prologue section of the listing.
This section tells you:

who compiled the module/program
what source was used to produce the module/program
what options were used when compiling the module/program

You may need to know about the command options (for example, the debug view
selected, or the binding directory used) when you make later changes to the
program.

The following specifications for the OPTION parameter provides additional informa-
tion as indicated:

¢ *SHOWCPY and *EXPDDS provide a complete description of the program,
including all specifications form /COPY members, and generated specifications
from externally-described files.

* *XREF allows you to check the use of files, fields and indicators within the
module/program.

e *EXT allows you to see which procedures and fields are imported or exported
by the module/program. It also identifies the actual files which were used for
generating the descriptions for externally-described files and data structures.

46 ILE RPG/400 Programmer's Guide




Accessing the RETURNCODE Data Area

Both the CRTBNDRPG and CRTRPGMOD (see “Using the CRTRPGMOD
Command” on page 50) commands create and update a data area with the status
of the last compilation. This data area is named RETURNCODE, is 400 characters
long, and is placed into library QTEMP.

To access the RETURNCODE data area, specify RETURNCODE in factor 2 of a
*DTAARA DEFINE statement.

The data area RETURNCODE has the following format:

Byte
1

6-10

11-12
13-14
15-20

21-26
27-32
33-100
101-110
111-120

121-130
131-140
141-150
151-160
161-170
171-180
181-329

Content and Meaning

For CRTRPGMOD, character '1' means a module was created in
the specified library. For CRTBNDRPG, character '1' means a
module with the same name as the program name was created in
QTEMP.

Character '1' means the compilation failed because of compiler
errors.

Character '1' means the compilation failed because of source
errors.

Not set. Always '0'.

Character '1' means the translator was not called because either
OPTION(*NOGEN) was specified on the CRTRPGMOD or

CADTRNNDDMA A~

A +h ilati failad haf thAa +
LUnioiNnunira commanda, oF the compiiaiion Taiied oeiore ine wran

lator was called.

Number of source statements

Severity level from command

Highest severity of diagnostic messages

Number of errors found in the module (CRTRPGMOD) or program
(CRTBNDRPG).

Compile date

Compile time

Not set. Always blank

Module (CRTRPGMOD) name or program (CRTBNDRPG) name.

Module (CRTRPGMOD) library name or program (CRTBNDRPG)
library name.

Source file name

Source file library name
Source file member name
Compiler listing file name
Compiler listing library name
Compiler listing member name

Not set. Always blank

Chapter 5. Creating a Program with the CRTBNDRPG Command 47



48

330-334
335

336-340
341-345
346-379
380-384
385

386-390
391-395
396-400

ILE RPG/400 Programmer's Guide

Total elapsed compile time to the nearest 10th of a second

Not set. Always blank

Elapsed compile time to the nearest 10th of a second

Elapsed translator time to the nearest 10th of a second

Not set. Always blank

Total compile CPU time to the nearest 10th of a second

Not set. Always blank

CPU time used by compiler to the nearest 10th of a second
CPU time used by the translator to the nearest 10th of a second

Not set. Always blank




Creating a Module Object

Chapter 6. Creating a Program with the CRTRPGMOD and
CRTPGM Commands

The two-step process of program creation consists of compiling source into
modules using CRTRPGMOD and then binding one or more module objects into a
program using CRTPGM. With this process you can create permanent modules.
This in turn allows you to modularize an application without recompiling the whole
application. It also allows you to reuse the same module in different applications.

This chapter shows how to:

e Create a module object from RPG 1V source
¢ Bind modules into a program using CRTPGM
e Read a binder listing

¢ Change a module or program

Creating a Module Object

A module is a nonrunnable object (type *MODULE) that is the output of an ILE
compiler. It is the basic building block of an ILE program.

A module consists of one or more procedures. The number of procedures allowed
is language dependent. An ILE RPG/400 module consists of one procedure which
has its own LR semantics, cycle, file control blocks, and static storage.

Module creation consists of compiling a source member, and, if that is successful,
creating a *MODULE object. The *MODULE object includes a list of imports and

exports referenced within the module. It also includes debug data if you request

this at compile time.

A module cannot be run by itself. You must bind one or more modules together to
create a program object (type *PGM) which can then be run. You can also bind
one or more modules together to create a service program object (type *SRVPGM).
You then access the procedures within the bound modules through static procedure
calls.

This ability to combine modules allows you to:

» Reuse pieces of code generally resulting in smaller programs. Smaller pro-
grams give you better performance and easier debugging capabilities.

» Maintain shared code with little chance of introducing errors to other parts of
the overall program.

* Manage large programs more effectively. Modules allow you to divide your old
program into parts which can be managed separately. If the program needs to
be enhanced, you only need to recompile those modules which have been
changed.

* Create mixed-language programs where you bind together modules written in
the best language for the task required.

For more information about the concept of modules, refer to the ILE Concepts.

© Copyright IBM Corp. 1994 49



Creating a Module Object

Using the CRTRPGMOD Command

You create a module using the Create RPG Module (CRTRPGMOD) command.
You can use the command interactively, as part of a batch input stream, or from a
Command Language (CL) program.

If you are using the command interactively and need prompting, type
CRTRPGMOD and press F4 (Prompt). If you need help, type CRTRPGMOD and

press F1 (Help).

Table 3 lists the parameters of the CRTRPGMOD command and their system-
supplied defaults. The syntax diagram of the command and a description of the
parameters are found in Appendix C, “The Create Commands” on page 333.

Table 3. CRTRPGMOD Parameters and Their Default Values Grouped by Function

Module Identification

MODULE(*CURLIB/*CTLSPEC)
SRCFILE(*LIBL/QRPGLESRC)
SRCMBR(*MODULE)
TEXT(*SRCMBRTXT)

Determines created module name and library
Identifies source file and library

Identifies file member containing source specifications
Provides brief description of module.

Module Creation

GENLVL(10)
OPTION(*GEN)
DBGVIEW(*STMT)
OPTIMIZE(*NONE)
REPLACE(*YES)
AUT(*LIBCRTAUT)
TGTRLS(*CURRENT)

Conditions module creation to error severity (0-20).
*GEN/*NOGEN, determines if module is created.

Specify type of debug view, if any, to be included in module.
Determine level of optimization, if any.

Determine if module should replace existing module.
Specify type of authority for created module

Specify the release level the object is to be run on.

Compiler Listing

OUTPUT(*PRINT)
INDENT(*NONE)

OPTION(*XREF *NOSECLVL
*SHOWCPY *EXPDDS *EXT)

Determine if there is a compiler listing.

Determine if indentation should show in listing, and identify character for
marking it.

Specify contents of compiler listing.

Data Conversion Options

CVTOPT(*NONE)
ALWNULL(*NO)
FIXNBR(*NONE)

Specify how various data types from externally-described files are handled.
Determine if the module will accept values from null-capable fields.
Determine if invalid zoned decimal data is to be fixed upon conversion to
packed data.

Run-Time Considerations

SRTSEQ(*HEX)
LANGID(*JOBRUN)
TRUNCNBR(*YES)

Specify the sort sequence table to be used.
Used with SRTSEQ to specify the language identifier for sort sequence.
Specify action to take when numeric overflow occurs.

When requested, the CRTRPGMOD command creates a compiler listing which is
for the most part identical to the listing that is produced by the CRTBNDRPG

command.

(The listing created by CRTRPGMOD will never have a code gener-

ation or binding section.)

50 ILE RPG/400 Programmer's Guide




Creating a Module Object

For information on using the compiler listing, see “Using a Compiler Listing” on
page 41. A sample compiler listing is provided in Appendix D, “Compiler Listings”
on page 359.

Creating a Module Using CRTRPGMOD Defaults
In this example you create an ILE RPG/400 module object INCALC using the

CRTRPGMOD command and its default settings. The source for INCALC shown in
Figure 22.

1. To create a module object, type:
CRTRPGMOD MODULE(MYLIB/INCALC) SRCFILE(MYLIB/QRPGLESRC)

The module will be created in the library MYLIB with the name specified in the
command, INCALC. The source for the module is the source member INCALC
in file QRPGLESRC in the library MYLIB.

This module object can be debugged using a statement view and a compiler
listing for the module is produced.

2. Type one of the following CL commands to see the compiler listing.

* DSPJOB and then select option 4 (Display spooled files)

* WRKJOB
* WRKOUTQ queue-name
¢ WRKSPLF
A CC S E S S CSCSSSSCSSS S S S SSCS =SS SSSSS oSS SSSSSSSSTSSSSSSSS==E=======%
* MODULE NAME: INCALC *
* RELATED FILES: N/A *
* RELATED SOURCE: TRNSRPT *
* DESCRIPTION: This source calculates the income for the *
* transaction using the data in the fields in =*
* the parameter list. *
* It returns to the TRNSRPT after all the *
* calculations are done. *
K-S CSSSSSSSS S S S S oSS oSS CSSSSSSSSSSSSSSSSSSSSSS=S=====%
C *ENTRY PLIST
C PARM Prod 10
C PARM Qty 50
C PARM Disc 32
C PARM Inc 111

Figure 22 (Part 1 of 2). Source for INCALC member

Chapter 6. Creating a Program with the CRTRPGMOD and CRTPGM Commands 51



Creating a Module Object

C SELECT

C WHEN Prod = 'Model 1'

C EVAL Inc = 1500 * Qty * Disc
C WHEN Prod = 'Model 2'

C EVAL Inc = 3500 * Qty * Disc
C WHEN Prod = 'Model 8'

C EVAL Inc = 32000 % Qty * Disc
C WHEN Prod = 'Model 12'

C EVAL Inc = 28000 * Qty * Disc
C OTHER

C EVAL Inc = 0

C ENDSL

%« Return to the caller TRNSRPT. *
C RETURN

Figure 22 (Part 2 of 2). Source for INCALC member

Creating a Module for Source Debugging

In this example, you create an ILE RPG/400 module object which you can debug
using the source debugger. The source for this module is shown in Figure 23.

To create a module object, type:

CRTRPGMOD MODULE(MYLIB/TRNSRPT) SRCFILE(MYLIB/QRPGLESRC)
DBGVIEW (*SOURCE)

The module is created in the library MYLIB with the same name as the source file
on which it is based, namely, TRNSRPT. This module object can be debugged
using a source view. For information on the other views available, see “Preparing a
Program for Debugging” on page 115.

A compiler listing for the TRNSRPT module will be produced.

K ESSSSSSSSSSSS oSS CSSSCSSSCSSSSSSSCSSESSSSSESSSSSSSSSSSSSSSSSSSS=S==%
* MODULE NAME: TRNSRPT *
* RELATED FILES: TRNSDTA (PF) *
* RELATED SOURCE: INCALC (calculations procedure) *
* DESCRIPTION: This program reads every tranasction record =
* stored in the physical file TRNSDTA. It calls =
* INCALC which performs calculations and *
* returns a value back. This program then *
* prints the transaction record out. *
*==::::::=========:=:::=============::::::::::=========:=====:::*
FTRNSDTA  IP E DISK

FQSYSPRT 0O F 80 PRINTER

*

ITRNREC 01

Figure 23 (Part 1 of 2). Source for TRNSRPT module

52 ILE RPG/400 Programmer's Guide




Creating a Module Object

* Call the calculation procedure INCALC. *
c o1 CALLB 'INCALC'
C PARM PROD
C PARM QTyY
C PARM DISCOUNT
C PARM INCOME 111
C
OQSYSPRT D 01 1
0 12 'PRODUCT: '
0 PROD 25
0 40 'QUANTITY: '
0 QTy 45
0 60 'INCOME: '
0 INCOME 2 75

Figure 23 (Part 2 of 2). Source for TRNSRPT module

The DDS for the module TRNSDTA is shown in Figure 24.

A*****************************************************************

A* RELATED FILES: TRNSRPT *
Ax DESCRIPTION: This is the physical file TRNSDTA. It has *
Ax one record format called TRNSREC. *

A*****************************************************************

A+ PARTS TRANSACTION FILE -- TRNSDTA

A R TRNREC

A PROD 10S 0 TEXT('Product')
A QTY 5S 0 TEXT('Quantity')
A DISCOUNT 35 2 TEXT{'Discount')

Figure 24. DDS for TRNSDTA

Additional Examples
For additional examples of creating modules, see:

» “Sample Service Program” on page 65, for an example of creating a module
for a service program.

¢ “Binding to a Program” on page 69. for an example of creating a module to be
used with a service program.

* “Dynamically Allocating Storage for a Run-Time Array” on page 84, for an
example of creating a module for dynamically allocating storage for a run-time
array

¢ “Sample Source for Debug Examples” on page 147, for example of creating an
RPG and C module for use in a sample debug program.

Behavior of Bound ILE RPG/400 Modules
In ILE RPG/400, the procedure is the boundary for:

Scope of LR semantics
Scope of open files
Scope of cycle.

Since each ILE RPG/400 module consists of one and only one procedure, proce-
dure scope is the same as module scope. When you bind together multiple

Chapter 6. Creating a Program with the CRTRPGMOD and CRTPGM Commands 53



Binding Modules into a Program

modules, the resulting program will have multiple cycles, namely, one per ILE
RPG/400 procedure.

Note: Procedure scope may not equal module scope in other ILE languages since
they may treat the notion of procedure differently.

The following CL commands can be used with modules:

¢ Display Module (DSPMOD)

¢ Change Module (CHGMOD)

¢ Delete Module (DLTMOD)

e Work with Modules (WRKMOD)

For further information on these commands see the CL Reference.

Binding Modules into a Program

Binding is the process of creating a runnable ILE program by combining one or
more modules and optional service programs, and resolving symbols passed
between them. The system code that does this combining and resolving is called a
binder on the AS/400 system.

As part of the binding process, a procedure must be identified as the startup proce-
dure, or program entry procedure. When a program is called, the program entry
procedure receives the parameters from the command line and is given initial

control for the program. The user's code associated with the program entry proce-

e e [T 2=

uwc Ib lIIC user GIILIy |J oceaure.

Every ILE RPG/400 module implicitly contains a program entry procedure.
However, this may not be true of other ILE languages. For example, an ILE C/400
module contains a program entry procedure only if it contains a main() function.

Figure 25 gives an idea of the internal structure of a program object. It shows the
program object TRPT, which was created by binding the two modules TRNSRPT
and INCALC. TRNSRPT is the entry module.

—*PGM(TRPT)
—TRNSRPT-Module

Program Entry
Procedure

User Entry
Procedure

— INCALC Module

Procedure

Figure 25. Structure of Program TRPT

Within a bound object, procedures can interrelate using static procedure calls.
These bound calls are faster than external calls. Therefore, an application con-
sisting of a single bound program with many bound calls should perform faster than

54 ILE RPG/400 Programmer's Guide




Binding Modules into a Program

a similar application consisting of separate programs with many external interappli-
cation calls.

In addition to binding modules together, you can also bind them to service pro-
grams (type *SRVPGM). Service programs allow you to code and maintain
modules separately from the program modules. Common routines can be created
as service programs and if the routine changes, the change can be incorporated by
binding the service program again. The programs that use these common routines
do not have to be recreated. For information on creating service programs see
Chapter 7, “Creating a Service Program” on page 63.

For information on the binding process and the binder, refer to the ILE Concepts.

Using the CRTPGM Command

The Create Program (CRTPGM) command creates a program object from one or
more previously created modules and, if required, one or more service programs.
You can bind modules created by any of the ILE Create Module commands,
CRTRPGMOD, CRTCMOD, CRTCBLMOD or CRTCLMOD.

Note: The modules and/or service programs required must have been created
previously.

Before you create a program object using the CRTPGM command, you should:
1. Establish a program name.

2. ldentify the module or modules, and if required, service programs you want to
bind into a program object.

3. Identify the module which has the program entry procedure.

You indicate which module contains the program entry procedure through the
ENTMOD parameter of CRTPGM. The default is ENTMOD(*FIRST), meaning
that the module containing the first program entry procedure found in the list for
the MODULE parameter is the entry module.

If you are binding more than one ILE RPG/400 modules together, then you
should specify *FIRST or else specify the module name with the program entry
procedure. You can use ENTMOD(*ONLY) when you are binding only one
module into a program object or if you are binding several modules, but only
one contains a program entry procedure. For example, if you an RPG module
to a C module without a main() function, then you can specify
ENTMOD(*ONLY).

4. Identify the activation group that the program is to use.

Specify the named activation group QILE if your program has no special
requirements or if you are not sure which group to use. In general, it is a good
idea to run an application in its own activation group. Therefore, you may want
to name the activation group after the application.

Note that the default activation group for CRTPGM is *NEW. This means that
your program will run in its own activation group, and the activation group will
terminate when the program does. This means that whether or not you set on
LR, your program will have a fresh copy of its data the next time you call it.
For more information on activation groups see “Specifying an Activation Group”
on page 80.

Chapter 6. Creating a Program with the CRTRPGMOD and CRTPGM Commands 55



Binding Modules into a Program

To create a program object using the CRTPGM command, perform the following
steps:

1. Enter the CRTPGM command.
2. Enter the appropriate values for the command parameter.
Tabie 4 lists the CRTPGM command parameters and their defauit vaiues. For a

full description of the CRTPGM command and its parameters, refer to the CL Ref-
erence.

Table 4. Parameters for CRTPGM Command and their Default Values

Parameter Group Parameter(Default Value)

Identification PGM(library name/program name)
MODULE(*PGM)

Program access ENTMOD(*FIRST)

Binding BNDSRVPGM(*NONE)
BNDDIR(*NONE)

Run time ACTGRP(*NEW)

Miscellaneous OPTION(*GEN *NODUPPROC *NODUPVAR *WARN *RSLVREF)
DETAIL(*NONE)
ALWUPD(*YES)
ALWRINZ(*NO)
REPLACE(*YES)
AUT(*LIBCRTAUT)
TEXT(*ENTMODTXT)
TGTRLS(*CURRENT)
USRPRF(*USER)

Once you have entered the CRTPGM command, the system performs the following
actions:

1. Copies listed modules into what will become the program object and links any
service programs to the program object.

2. ldentifies the module containing the program entry procedure and locates the
first import in this module.

3. Checks the modules in the order in which they are listed and matches the first
import with a module export.

. Returns to the first module and locates the next import.
. Resolves all imports in the first module.

. Continues to the next module and resolves all imports.

N o o A

. Resolves all imports in each subsequent module until all of the imports have
been resolved.

8. If any imports cannot be resolved with an export, the binding process termi-
nates without creating a program object.

9. Once all the imports have been resolved, the binding process completes and
the program object is created.

Note: If you have specified that a variable is to be exported (using the EXPORT
keyword), it is possible that the variable name will be identical to a variable
in another procedure within the bound program object. In this case, the

56 ILE RPG/400 Programmer's Guide




Binding Modules into a Program

results may not be as expected. See ILE Concepts for information on how
to handle this situation.

Binding Multiple Modules
This example shows you how to use the CRTPGM command to bind two ILE
RPG/400 modules into a program TRPT. In this program, the following occurs:

e The module TRNSRPT reads each transaction record from a file TRNSDTA.

« |t then calls the module INCALC using the bound procedure call mechanism
CALLB.

» INCALC then calculates the income pertaining to each transaction.

e INCALC returns to TRNSRPT.

o TRNSRPT then prints the transaction record.

Source for TRNSRPT, INCALC, and TRNSDTA is shown in Figure 23 on page 52,
Figure 22 on page 51 and Figure 24 on page 53 respectively.
1. First create the module TRNSRPT. Type:
CRTRPGMOD MODULE (MYLIB/TRNSRPT)
2. Then create module INCALC by typing:
CRTRPGMOD MODULE(MYLIB/INCALC)
3. To create the program object, type:

CRTPGM PGM(MYLIB/TRPT) MODULE(TRNSRPT INCALC)
ENTMOD (*FIRST) ACTGRP(TRPT)

The CRTPGM command creates a program object TRPT in the library MYLIB.

Note that TRNSRPT is listed first in the MODULE parameter; this means it will
contain the program entry procedure. If INCALC had been listed first, it would
contain the program entry procedure; however, TRNSRPT would never run since it
would not be called by INCALC.

The program will run in the named activation group TRPT. It runs in a named
group to ensure that no other programs can affect its resources.

Additional Examples
For additional examples of creating programs, see:

e “Binding to a Program” on page 69, for an example of binding a module and a
service program.

» “Sample Source for Debug Examples” on page 147, for an example of creating
a program consisting of an RPG and C module.

Related CL Commands

The following CL commands can be used with programs:

e Change Program (CHGPGM)

¢ Delete Program (DLTPGM)

» Display Program (DSPPGM)

 Display Program References (DSPPGMREF)
e Update Program (UPDPGM)

e Work with Program (WRKPGM)

For further information on these commands see the CL Reference.

Chapter 6. Creating a Program with the CRTRPGMOD and CRTPGM Commands 57



Changing a Module or Program

Using a Binder Listing

The binding process can produce a listing that describes the resources used,
symbols and objects encountered, and problems that were resolved or not resolved
in the binding process. The listing is produced as a spooled file for the job you use
to enter the CRTPGM command. The command default is to not produce this infor-
mation, but you can choose a DETAIL parameter value to generate it at three
levels of detail:

e *BASIC
» *EXTENDED
e *FULL

The binder listing includes the following sections depending on the value specified
for DETAIL:

Table 5. Sections of the Binder Listing based on DETAIL Parameter
Section Name *BASIC *EXTENDED *FULL

Command Option Summary X
Brief Summary Table X
Extended Summary Table

Binder Information Listing

Cross-Reference Listing

Binding Statistics

X X X X

XX X X X X

The information in this listing can help you diagnose problems if the binding was
not successful, or give feedback about what the binder encountered in the process.
You may want to store the listing for an ILE program in the file where you store the
modules or the module source for a program. To copy this listing to a database
file, you can use the Copy Spool File (CPYSPLF) command.

Note: The CRTBNDRPG command will not create a binder listing. However, if
any binding errors occur during the binding phase, the errors will be noted
in your job log, and the compiler listing will include a message to this effect.

For an example of a basic binder listing, see “Sample Binder Listing” on page 71.

For more information on binder listings see ILE Concepts.

Changing a Module or Program

An ILE object may need to be changed for enhancements or for maintenance
reasons. You can isolate what needs to be changed by using debugging informa-
tion or the binder listing from the CRTPGM command. From this information you
can determine what module needs to change, and often, what procedure or field
needs to change.

In addition, you may want to change the optimization level or observability of a
module or program. This often happens when you want to debug an program or
module, or when you are ready to put a program into production. Such changes
can be performed more quickly and use fewer system resources than re-creating
the object in question.

58 ILE RPG/400 Programmer's Guide




Changing a Module or Program

Finally, you may want to reduce the program size once you have completed an
application. ILE programs have additional data added to them which may make
them larger than a similar OPM program.

Each of the above requires different data to make the change. The resources you
need may not be available to you for an ILE program.

The following sections tell you how to

e Update a program

e Change the optimization level
e Change observability

¢ Reduce the object size

Note: In the remainder of this section the term 'object' will be used to refer to
either an ILE module or ILE program.

Using the UPDPGM Command

In general, you can update a program by replacing modules as needed. You do
not have to re-create the program. This is helpful if you are supplying an applica-
tion to other sites. You need only send the revised modules, and the receiving site
can update the application using the UPDPGM or UPDSRVPGM command.

The UPDPGM command works with both program and module objects. The
parameters on the command are very similar to those on the CRTPGM command.
For example, to replace a module in a program, you would enter the module name
for MODULE parameter and the library name. The UPDPGM command requires
that the modules to be replaced be in the same libraries as when the program was
created. You can specify that all modules are to be replaced, or some subset.

The UPDPGM command requires that the module object be present. Thus, it is
easier to use the command when you have created the program using separate
compile and bind steps. Since the module object already exists, you simply specify
its name and library when issuing the command.

To update a program created by CRTBNDRPG command, you must ensure that
the revised module is in the library QTEMP. This is because the temporary module
used when the CRTBNDRPG command was issued, was created in QTEMP.

Once the module is in QTEMP, you can issue the UPDPGM command to replace
the module.

For more information, see ILE Concepts and CL Reference.

Changing the Optimization Level
Optimizing an object means looking at the compiled code, determining what can
be done to make the run-time performance as fast as possible, and making the
necessary changes. In general, the higher the optimizing request, the longer it
takes to create an object. At run time the highly optimized program or service
program should run faster than the corresponding nonoptimized program or service
program.

However, at higher levels of optimization, the values of fields may not be accurate
when displayed in a debug session, or after recovery from exception. In addition,
optimized code may have altered breakpoints and step locations used by the

Chapter 6. Creating a Program with the CRTRPGMOD and CRTPGM Commands 59



Changing a Module or Program

60

source debugger, since the optimization changes may rearrange or eliminate some
statements.

To ensure that the contents of a field reflect their most current value, especially
after exception recovery, you can use the NOOPT keyword on the corresponding
Definition specification. For more information, see “Optimization Considerations” on
page 160.

To circumvent this problem while debugging, you can lower the optimization level of
a module to display fields accurately as you debug a program, and then raise the
level again afterwards to improve the program efficiency as you get the program
ready for production.

To determine the current optimization level of a program object, use the DSPPGM
command. Display 3 of this command indicates the current level. To change the
optimization level of a program, use the CHGPGM command. On the Optimize
program parameter you can specify one the following values: *FULL, *BASIC,
*NONE. These are the same values which can be specified on the OPTIMIZE
parameters of either create command. The program is automatically re-created
when the command runs.

Similarly, to determine the current optimization level of a module, use the DSPMOD
command. Display 1, page 2 of this command indicates the current level. To
change the optimization level, use the CHGMOD command. You then need to re-
create the program either using UPDPGM or CRTPGM.

Observability involves two kinds of data that can be stored with an object, and that
allow the object to be changed without recompiling the source. The addition of this
data increases the size of the object. Consequently, before you may want to
remove the data in order to reduce object size. But once the data is removed,
observability is also removed. You must recompile the source and recreate the
program to replace the data. The two types of data are:

Create Data Represented by the *CRTDTA value. This data is necessary to trans-
late the code to machine instructions. The object must have this data
before you can change the optimization level.

Debug Data Represented by the *DBGDTA value. This data is necessary to allow
an object to be debugged.

Use the CHGPGM command or the CHGMOD command to remove either kind of
data from a program or module respectively. remove both types, or remove none.
Removing all observability reduces an object to its minimum size (without com-
pression). It is not possible to change the object in any way unless you re-create it.
Therefore, ensure that you have all source required to create the program or have
a comparable program object with CRTDATA. To re-create it, you must have
authorization to access the source code.

ILE RPG/400 Programmer's Guide



Changing a Module or Program

Reducing an Obiject's Size
reducing object size

The create data (*CRTDTA) associated with an ILE program or module may make
up more than half of the object's size. By removing or compressing this data, you
will reduce the secondary storage requirements for your programs significantly.

If you remove the data, ensure that you have all source required to create the
program or have a comparable program object with CRTDATA. Otherwise you will
not be able to change the object.

An alternative is to compress the object, using the Compress Object (CPROBJ)
command. A compressed object takes up less system storage than an uncom-
pressed one. If the compressed program is called, the part of the object containing
the runnable code is automatically decompressed. You can also decompress a
compressed object by using the Decompress Object (DCPOBJ) command.

For more information on these CL commands, see the CL Reference.

Chapter 6. Creating a Program with the CRTRPGMOD and CRTPGM Commands 61



Changing a Module or Program

62 ILE RPG/400 Programmer's Guide



Chapter 7. C

reating a Service Program

This chapter provides:

* An overview of the service program concept

e Strategies for creating service programs

o A brief description of the CRTSRVPGM command
¢ An example of a service program

Service Program Overview

A service program is a bound program (type *SRVPGM) consisting of a set of pro-
cedures that can be called by procedures in other bound programs.

Service programs are typically used for common functions that are frequently called
within an application and across applications. For example, the ILE compilers use
service programs to provide runtime services such as math functions and
input/output routines. Service programs enable reuse, simplify maintenance, and
reduce storage requirements.

A service program differs from a program in two ways:

¢ It does not contain a program entry procedure. This means that you cannot
call a service program using the CALL operation.

* A service program is bound into a program or other service programs using
binding by reference.

When you bind a service program to a program, the contents of the service
program are not copied into the bound program. Instead, linkage information of the
service program is bound into the program. This is called 'binding by reference' in
contrast to the static binding process used to bind modules into programs.

Because a service program is bound by reference to a program, you can call the
service program's exported procedures using the CALLB operation. The initial call
has a certain amount of overhead because it is bound by reference. However,
subsequent calls to any of its procedures are faster than program calls.

The set of exports contained in a service program are the interface to the services
provided by it. You can use the Display Service Program (DSPSRVPGM)
command or the service program listing to see what variable names are available
for use the calling procedures.

Strategies for Creating Service Programs

© Copyright IBM Corp. 1994

When creating a service program, you should keep in mind:
1. whether you intend to update the program at a later date
2. whether any updates will involve changes to the interface (namely, the imports
and exports used).

If the interface to a service program changes, then you may have to re-bind any
programs bound to the original service program. However, if the changes required
are upward-compatible, you may be able to reduce the amount of re-binding if you

63



created the service program using binder language. In this case, after updating the
binder language source to identify the new exports you need to re-bind only those
programs that use them.

Binder language gives you control over the exports of a service program. This
control can be very useful if you want to:

¢ Mask certain service program procedures from service-program users
¢ Fix problems

e Enhance function

* Reduce the impact of changes to the users of an application.

See “Sample Service Program” on page 65 for an example of using binder lan-
guage to create a service program.

For information on binder language, masking exports, and other service program
concepts, see ILE Concepts.

Creating a Service Program Using CRTSRVPGM

You create a service program using the Create Service Program (CRTSRVPGM)
command. Any ILE module can be bound into a service program. The module(s)
must exist before you can create a service program with it.

Table 6 lists the CRTSRVPGM parameters and their defaults. For a full description
of the CRTSRVPGM command and its parameters, refer to the CL Reference.

Table 6. Parameters for CRTSRVPGM Command and their Default Values

Parameter Group Parameter(Default Value)

Identification SRVPGM(library namelservice program name)
MODULE(*SRVPGM)

Program access EXPORT(*SRCFILE)
SRCFILE(*LIBL/QSRVSRC)
SRCMBR(*SRVPGM)

Binding BNDSRVPGM(*NONE)
BNDDIR(*NONE)

Run time ACTGRP(*CALLER)

Miscellaneous OPTION(*GEN *NODUPPROC *NODUPVAR *WARN *RSLVREF)
DETAIL(*NONE)
ALWUPD(*YES)
ALWRINZ(*NO)
REPLACE(*YES)
AUT(*LIBCRTAUT)
TEXT(*ENTMODTXT)
TGTRLS(*CURRENT)
USRPRF(*USER)

See “Creating the Service Program” on page 68 for an example of using the
CRTSRVPGM command.

64 ILE RPG/400 Programmer's Guide



Changing A Service Program

You can update or change a service program in the same ways available to a
program object. In other words, you can:

o Update the service program (using UPDSRVPGM)

e Change the optimization level (using CHGSRVPGM)
* Remove observability (using CHGSRVPGM)

« Reduce the size (using CPROBJ)

For more information on any of the above points, see “Changing a Module or
Program” on page 58.

Related CL commands
The following CL commands are also used with service programs:

e Change Service Program (CHGSRVPGM)
Display Service Program (DSPSRVPGM)
Delete Service Program (DLTSRVPGM)
Update Service Program (UPDSRVPGM)
Work with Service Program (WRKSRVPGM)

Sample Service Program

The following example shows how to create a service program CVTTOHEX which
converts character strings to their hexadecimal equivalent. Two parameters are
passed to the service program:

1. a character field (InString) to be converted
2. a character field (HexString) which will contain the 2-byte hexadecimal equiv-
alent

The field HexString is used to contain the result of the conversion and also to indi-
cate the length of the string to be converted. For example, if a character string of
30 characters is passed, but you are only interested in converting the first ten, you
would pass a second parameter of 20 bytes (2 times 10). Based on the length of
the passed fields, the service program determines the length to handle.

Figure 26 on page 66 shows the source for the service program.
The basic logic of the procedure contained within the service program is listed

below:

1. Operational descriptors are used to determine the length of the passed param-
eters.

2. The length to be converted is determined: it is the lesser of the length of the
character string, or one-half the length of the hex string field.

3. Each character in the string is converted to a two-byte hexadecimal equivalent
using the subroutine GetHex.

4. The procedure returns to its caller.
The service program makes use of operational descriptors, which is an ILE con-
struct used when the precise nature of a passed parameter is not known ahead of

time, in this case the length. The operational descriptors are created on a call to a
procedure when you specify the operation extender (D) on the CALLB operation.

Chapter 7. Creating a Service Program 65



To use the operational descriptors, the service program must call the ILE bindable
API, CEEDOD (Retrieve Operational Descriptor). This API requires certain param-
eters which must be defined for the CALLB operation. However, it is the last
parameter which provides the information needed, namely, the length. For more
information on operational descriptors, see “Using Operational Descriptors” on

page 97.)
Ao D—S-=—=Z—-==—=-=-C-o-—————=——==—=-——-=-—=-—=-—=—=—=-—-SS=S—=SS=——=—==—=—T=-=o====%
* CVTTOHEX - convert input string to hex output string *
* *
* Note: Operational descriptors must be passed *
* *
K== ==—=========S====-==—==-=-----=-=—=---=-==-=====---=—-==—=---—-=—=--===========%
K o *
* Program parameters *
* 1. Input: string character(n) *
* 2. Output: hex string character(2 * n) *
K o *
D InString S 16383
D HexString S 32766
K o = = = = *
* Binary parameters for CEEDOD (Retrieve operational descriptor) =
R e L R g g g g g *
D ParmNum S 9B 0
D DescType S 9B 0
D DataType S 9B 0
D DescInfol S 9B 0
D DescInfo2 S 9B 0
D InLen S 9B 0
D HexLen S 9B 0
K 1 o 7 " *
* Other fields used by the program *
K o *
D HexDigits C CONST('0123456789ABCDEF')
D BinDs DS
D  BinNum 4B 0 INZ(0)
D BinChar 1 OVERLAY (BinNum:2)
D HexDs DS
D HexCl 1
D  HexC2 1
D InChar S 1
D Pos S 5P 0
D HexPos S 5P 0
C *ENTRY PLIST
C PARM InString
C PARM HexString

Figure 26 (Part 1 of 3). Source for Service Program CVTTOHEX

66 ILE RPG/400 Programmer's Guide




* Use the operational descriptors to determine the lengths of *
* the parameters that were passed.
K o - *
C CALLB 'CEEDOD'
C PARM 1 ParmNum
C PARM DescType
C PARM DataType
C PARM DescInfol
C PARM DescInfo2
C PARM InLen
C PARM *OMIT
C CALLB 'CEEDOD'
C PARM 2 ParmNum
C PARM DescType
C PARM DataType
C PARM DescInfol
C PARM DescInfo2
C PARM HexLen
C PARM *OMIT
K - - - - *
* Determine the length to handle (minimum of the input length
% and half of the hex length) *
K e o e - - - - - - - - - *
C IF InLen > HexlLen / 2
o EVAL InLen = HexLen / 2
C ENDIF
K o o *
* For each character in the input string, convert to a 2-byte *
* hexadecimal representation (for example, '5' --> 'F5') *
K o o o o o *
C EVAL HexPos =1
C DO InLen Pos
C EVAL InChar = %SUBST(InString:Pos:1)
C EXSR GetHex
C EVAL %SUBST (HexString:HexPos:2) = HexDs
C EVAL HexPos = HexPos + 2
C ENDDO
K *
* Done; return to caller. *
K o 7 o *
C RETURN

Figure 26 (Part 2 of 3). Source for Service Program CVTTOHEX

Chapter 7. Creating a Service Program

67



koo oooo—---=-SoC-SSSSoSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS=====%
* GetHex - subroutine to convert 'InChar' to 'HexDs' *
* *
% Use division by 16 to separate the two hexadecimal digits. *
* The quotient is the first digit, the remainder is the second. *
oo ss o s s ssSCSEE S S SSESSS S SSSSSNmETEESS=Ss======%
C GetHex BEGSR

C EVAL BinChar = InChar

C BinNum DIV 16 X1 50

C MVR X2 50

K o o 7 *
% Use the hexadecimal digit (plus 1) to substring the Tist of *
* hexadecimal characters '012...CDEF'. *
K o i o *
C EVAL HexCl = %SUBST(HexDigits:X1+1:1)

C EVAL HexC2 = %SUBST(HexDigits:X2+1:1)

C ENDSR

Figure 26 (Part 3 of 3). Source for Service Program CVTTOHEX

When designing this service program, it was decided to make use of binder lan-
guage to determine the interface, so that the program could be more easily updated
at a later date. Figure 27 shows the binder language needed define the exports of
the service program CVTTOHEX.

STRPGMEXP SIGNATURE (CVTHEX)
EXPORT SYMBOL('CVTTOHEX"')
ENDPGMEXP

Figure 27. Source for Binder Language for CVTTOHEX

The parameter SIGNATURE on STRPGMEXP identifies the interface that the
service program will provide. In this case, the export identified in the binder lan-
guage is the interface. Any program bound to CVTTOHEX will make use of this
signature.

The binder language EXPORT statements identify the exports of the service
program. You need one for each procedure whose exports you want to make
available to the caller. In this case, the service program contains one module
which contains one procedure. Hence, only one EXPORT statement is required.

For more information on binder language and signatures, see ILE Concepts.

Creating the Service Program
To create the service program CVTTOHEX, follow these steps:
1. Create the module CVTTOHEX from the source in Figure 26 on page 66, by
entering:
CRTRPGMOD MODULE (MYLIB/CVTTOHEX) SRCFILE(MYLIB/QRPGLESRC)
2. Create the service program using the module CVTTOHEX and the binder lan-
guage shown in Figure 27.

CRTSRVPGM SRVPGM(MYLIB/CVTTOHEX) MODULE (*SRVPGM)
EXPORT (*SRCFILE) SRCFILE(MYLIB/QSRVSRC)
SRCMBR (*SRVPGM)

68 ILE RPG/400 Programmer's Guide




The last three parameters in the above command identify the exports which the
service program will make available. In this case, it is based on the source
found in the member CVTTOHEX in the file QSRVSRC in the library MYLIB.

Note that a binding directory is not required here because all modules needed
to create the service program have been specified with the MODULE param-
eter.

The service program CVTTOHEX will be created in the library MYLIB. It can be
debugged using a statement view; this is determined by the default DBGVIEW
parameter on the CRTRPGMOD command. No binder listing is produced.

Binding to a Program
To complete the example, we will create an 'application' consisting of a program
CVTHEXPGM which is bound to the service program. It uses a seven-character
string which it passes to CVTTOHEX twice, once where the value of the hex string
is 10 (that is, convert 5 characters) and again where the value is 14, that is, the
actual length.

Note that the program CVTHEXPGM serves to show the use of the service
program CVTTOHEX. In a real application the caller of CVTTOHEX would have
another primary purpose other than testing CVTTOHEX. Furthermore, a service
program would normally be used by many other programs, or many times by a few
programs; otherwise the overhead of initial call does not justify making it into a
service program.

To create the application follow these steps:

1. Create the module from the source in Figure 28 on page 70, by entering:
CRTRPGMOD MODULE(MYLIB/CVTHEXPGM) SRCFILE(MYLIB/QRPGLESRC)

2. Create the program by typing

CRTPGM PGM(MYLIB/CVTHEXPGM)
BNDSRVPGM (MYLIB/CVTTOHEX)
DETAIL(*BASIC)

When CVTHEXPGM is created, it will include information regarding the inter-
face it uses to interact with the service program. This is the same as reflected
in the binder language for CVTTOHEX.

3. Call the program, by typing:
CALL CVTHEXPGM

During the process of making CVTHEXPGM ready to run, the system verifies
that:

* The service program CVTTOHEX in library MYLIB can be found
* The public interface used by CVTHEXPGM when it was created is still valid
at run time.

If either of the above is not true, then an error message is issued.

The output of CVTHEXPGM is shown below. (The input string is 'ABC123*'))

Resultl4++++++

Resultl0++

C1C2C3F1F2 10 character output
C1C2C3F1F2F35C 14 character output

Chapter 7. Creating a Service Program 69



*

FQ
D
D
D

D
D

*
*
*
*

OOOOOOO

*
*

OOOOO0

C

0Q
0
0Q
0
0Q
0
0

Program to test Service Program CVTTOHEX

1. Use a 7-character input string

2. Convert to a 1@-character hex string (only the first five
input characters will be used because the result is too
small for the entire input string)

3. Convert to a l4-character hex string (all seven input
characters will be used because the result is long enough)

SYSPRT 0 F 80 PRINTER
ResultDS DS
Resultl4 1 14
Result10 1 10
InString S 7
Comment S 25
EVAL InString = 'ABC123*'
Pass character string and the 10-character result field
using a CALLB(D). The operation extender (D) will create
operational descriptors for the passed parameters.
These are required by the called procedure in CVTTOHEX.
EVAL Comment = '10 character output'
CLEAR ResultDS
CALLB(D) 'CVTTOHEX'
PARM InString
PARM Resultl10
EXCEPT
Pass character string and the 14-character result field
using a CALLB(D).
EVAL Comment = '14 character output'
CLEAR ResultDS
CALLB(D) 'CVTTOHEX'
PARM InString
PARM Resultl4
EXCEPT
EVAL *INLR = *ON
SYSPRT H 1P
'Resultlé++++++!
SYSPRT H 1P
'ResultlO++'
SYSPRT E
ResultDS
Comment +5

* %k %k % * % F

*

*

* % X X

Figure 28. Source for Test Program CVTHEXPGM

70

ILE RPG/400 Programmer's Guide




Updating the Service Program
Because of the binder language, the service program could be updated and the

program CVTHEXPGM would not have to be re-compiled. For example, you could
add a new procedure to CVTTOHEX you would:

1. Create a module object for the new procedure.

2. Modify the binder language source to handle the interface associated with the
new procedure. This would involve adding any new export statements fol-
lowing the existing ones.

3. Bind the new module to service program CVTTOHEX by re-creating the service
program.

New programs can access the new function. - Since the old exports are in the same
order they can still be used by the existing programs. Until it is necessary to also
update the existing programs, they do not have to be re-compiled.

For more information on updating service programs, see ILE Concepts.

Sample Binder Listing

Figure 29 on page 72 shows a sample binder listing for the CVTHEXPGM. The
listing is an example of a basic listing. For more information on binder listings, see
“Using a Binder Listing” on page 58 and also /LE Concepts.

Chapter 7. Creating a Service Program 71



Create Program

5763SS1 V3RIMO 940909 MYLIB/CVTI
Program . . . . . . .. ... ... ... ... .1 CVTHEXPGM
Library . . . . . ..o oL oo MYLIB
Program entry procedure module . . . . . . . . . . : *FIRST
Library . . . . . o L oo
Activation group . . . . . . . . . . ... .. .. : o *NEW
Creation options . . . . . . . . ... ... ... : *GEN *NODUPPROC  *NODUPVAR
Listing detaii . . . . . . ... ... ... ...: *BASIC
Allow Update . . . . . . . . . ... ... ... .1 *YES
User profile . . . . . . . ... ... ... ...: =*USER
Replace existing program . . . . . . . . . . .. . : *YES
Authority . . . . . . . .. ... ... ... .. *LIBCRTAUT
Target release . . . . .. . . ... ... ... .: *CURRENT
Allow reinitialization . . . . . . . . .. ... .: =NO
Text . . . . . . . . . .. ..o .o ... . *ENTMODTXT
Module Library Module Library Module Library
CVTHEXPGM ~ MYLIB
Service Service Service
Program Library Program Library Program Library
CVTTOHEX MYLIB
Binding Binding Binding
Directory Library Directory Library Directory Library
*NONE

Create Program
5763SS1 V3RIMO 940909 MYLIB/CVT
Brief Summary Table

Program entry procedures . . . . . . . . ... : 1
Symbol Type Library Object Identifier
*MODULE ~ MYLIB CVTHEXPGM  _QRNP_PEP_CVTHEXPGM
Multiple strong definitions . . . ... ... : 0
Unresolved references . . . . . . .. . ... : 0

*%%%% END OF BRIEF SUMMARY TABLE
Create Program

5763SS1 V3RIMO 940909 MYLIB/CVT
Binding Statistics
Symbol collection CPU time . . . . . . . . . . . .. ... .: .016
Symbol resolution CPU time . . . . . . . . . . ... ... .: .004
Binding directory resolution CPU time . . . . .. ... .. : .175
Binder language compilation CPU time . . . . . . . . . . . . : .000
Listing creation CPU time . . . . . . . . . . . .. ... .: .068
Program/service program creation CPU time . . . . . . .. . : .234
Total CPU time . . . . . . . v v o o s e e : .995
Total elapsed time . . . . . . . . . . .. ... ... .. 3.531

*x % %% END OF BINDING STATISTICS
*CPC5D07 - Program CVTHEXPGM created in library MYLIB.
*xxxx END OF CREATE PROGRAM LISTING

HEXPGM AS400S01

*WARN *RSLVREF

Module

Service
Program

Binding
Directory

HEXPGM AS400501

* k ok Kk %

HEXPGM AS400S01

* Kk ok Kk ok

* K k Kk Kk

Page 1
09/22/94 23:24:00

Library

Library

Library

Page 2
09/22/94 23:24:00

Page 3
09/22/94 23:24:00

Figure 29. Basic Binder listing for CVTHEXPGM

72 ILE RPG/400 Programmer's Guide




Running a Program Using the CL CALL Command

Chapter 8. Running a Program

This chapter shows you how to:

 Run a program and pass parameters using the CL CALL command
¢ Run a program from a menu-driven application

e Run a program using a user-created command

* Manage activation groups

» Manage run-time storage.

In addition, you can run a program using:

e The Programmer Menu. CL Programming contains information on this menu.

e The Start Programming Development Manager (STRPDM) command.
ADTS/400: Programming Development Manager contains information on this
command.

e The QCMDEXC program. CL Programming contains information on this
program.

* A high-level language. Chapter 9, “Calling Programs and Procedures” on
page 91. provides information on running programs from another HLL or
calling service programs and procedures,

Running a Program Using the CL CALL Command

You can use the CL CALL command to run a program (type *PGM). You can use
the command interactively, as part of a batch job, or include it in a CL program. If
you need prompting, type CALL and press F4 (Prompt). If you need help, type
CALL and press F1 (Help).

For example, to call the program EMPRPT from the command line, type:

CALL EMPRPT

The program object specified must exist in a library and this library must be con-
tained in the library list “*LIBL. You can also explicitly specify the library in the CL
CALL command as follows:

CALL MYLIB/EMPRPT
See the CL Reference for further information about using the CL CALL command.

Once you call your program, the OS/400 system performs the instructions found in
the program.

Passing Parameters using the CL CALL Command

© Copyright IBM Corp. 1994

You use the PARM option of the CL CALL command to pass parameters to the ILE
program when you run it.

CALL PGM(program-name)
PARM(parameter-1 parameter-2 ... parameter-n)

You can also type the parameters without specifying any keywords:

CALL 1ibrary/program-name (parameter-1 parameter-2 ... parameter-n)

73



Running a Program Using the CL CALL Command

74

Each parameter value can be specified as a CL program variable or as one of the
following:

e a character string constant
* a numeric constant
* a logical constant

If you are passing parameters to a program where an ILE RPG/400 procedure is
the program entry procedure, then that program must have one and only one
*ENTRY PLIST specified. The parameters which follow (in the PARM statements)
should correspond on a one-to-one basis to those passed through the CALL
command.

Refer to the CALL Command in the CL Reference or to the section on "Passing
Parameters between Programs" in CL Programming for a full description of how
parameters are handled.

For example, the program EMPRPT2 requires the correct password to be passed
to it when it first started; otherwise it will not run. Figure 30 shows the source.
1. To create the program, type:
CRTBNDRPG PGM(MYLIB/EMPRPT2)

2. To run the program, type:
CALL MYLIB/EMPRPT2 (HELLO)

When the CALL command is issued, the contents of the parameter passed by
the command is stored and the program parameter PSWORD points to its
location. The program then checks to see if the contents of PSWORD matches
the value stored in the program, ("HELLO'). In this case, the two values are
the same, and so the program continues to run.

*======:==========================================:========——-====*
* PROGRAM NAME:  EMPRPT2

* RELATED FILES: EMPMST  (PHYSICAL FILE)

* PRINT (PRINTER FILE)

* DESCRIPTION: This program prints employee information

Lo R R T

* stored in the file EMPMST if the password

* entered is correct.

* Run the program by typing "CALL library name/

* EMPRPT2 (PSWORD)" on the command line, where

* PSWORD 1is the password for this program.

* The password for this program is 'HELLO'.
~k====:::::::::::::=======::::====:::==========:::::============:*
FPRINT 0 F 80 PRINTER

FEMPMST IP E K DISK

TEMPREC 01

Figure 30 (Part 1 of 2). ILE RPG/400 Program that Requires Parameters at Run Time

ILE RPG/400 Programmer's Guide




Running a Program Using the CL CALL Command

K o o - R *
* The entry parameter list is specified in this program. *
% There is one parameter, called PSWORD, and it is a *
% character field 5 characters Tong. *
K o *

C *ENTRY PLIST

C PARM PSWORD 5
K T *
% The password for this program is 'HELLO'. The field PSWORD *
* is checked to see whether or not it contains 'HELLO'. *
* If it does not, the last record indicator (LR) and *IN99 *
= are set on. *IN99 controls the printing of messages. *
K o *
C PSWORD IFNE '"HELLO'

C SETON LR99
C ENDIF

OPRINT H 1P 2 6

0 50 'EMPLOYEE INFORMATION'

0 H 1P

0 12 'NAME'

0 34 'SERIAL #'

0 45 'DEPT'

0 56 'TYPE'

0 D 01IN99

0 ENAME 20

0 ENUM 32

0 EDEPT 45

0 ETYPE 55

0 D 99

0 16 ‘'#xx!

0 40 'Invalid Password Entered'
0 43 'Hkx!

Figure 30 (Part 2 of 2). ILE RPG/400 Program that Requires Parameters at Run Time

Figure 31 shows the DDS which is referenced by the EMPRPT source.

A*****************************************************************

A+ DESCRIPTION: This is the DDS for the physical file EMPMST. =

Ax It contains one record format called EMPREC. *
A* This file contains one record for each employee *
A* of the company. *

A*****************************************************************

Ax*

A R EMPREC

A ENUM 5 0 TEXT('EMPLOYEE NUMBER')

A ENAME 20 TEXT('EMPLOYEE NAME')

A ETYPE 1 TEXT('EMPLOYEE TYPE')

A EDEPT 30 TEXT('EMPLOYEE DEPARTMENT')

A ENHRS 31 TEXT('EMPLOYEE NORMAL WEEK HOURS')
A K ENUM

Figure 31. DDS for EMPRPT

Chapter 8. Running a Program 75



Running a Program From a Menu-Driven Application

Running a Program From a Menu-Driven Application

Another way to run an ILE program is from a menu-driven application. The work-
station user selects an option from a menu, which in turn calls a particular program.
Figure 32 illustrates an example of an application menu.

PAYROLL DEPARTMENT MENU
Select one of the following:
1. Inquire into employee master

2. Change employee master
3. Add new employee

Selection or command
===>

F3=Exit  F4=Prompt F9=Retrieve F12=Cancel
F13=Information Assistant F16=AS/400 main menu

Figure 32. Example of an Application Menu

The menu shown in Figure 32 is displayed by a menu program in which each
option calls a separate ILE program. You can create the menu by using STRSDA
and selecting option 2 ('Design menus').

Figure 33 on page 77 shows the DDS for the display file of the above PAYROLL
DEPARTMENT MENU. The source member is called PAYROL and has a source
type of MNUDDS. The file was created using SDA.

76 ILE RPG/400 Programmer's Guide



Running a Program From a Menu-Driven Application

A* Free Form Menu: PAYROL
Ax

R PAYROL

> > > > > >

3
5
6
7

* CMDPROMPT Do not delete this DDS

019

NN~NoOYoyoy 01 0101 Ot

34'PAYROLL DEPARTMENT MENU'

spec.

24'employee’
33'master’

27 'master’

DSPSIZ(24 80 *DS3 -
27 132 *DS4)

CHGINPDFT

INDARA

PRINT (*LIBL/QSYSPRT)

DSPMOD (*DS3)
LOCK
SLNO(01)
CLRL(*ALL)
ALWROL

CFo3

HELP

HOME

HLPRTN

DSPATR(HI)

2'Select one of the following:'
COLOR(BLU)

7'1.

7'2."

7'3."

2'Selection or command -

11'Inquire’
19'into’

11'Change’
18'employee’

11'Add"
15'new’
19'employee’

Figure 33. Data Description Specification of an Application Menu

Figure 34 shows the source of the application menu illustrated in Figure 32 on
page 76. The source member is called PAYROLQQ and has a source type of

MNUCMD. It was also created using SDA.

PAYROLQQ, 1

0001 call RPGINQ
0002 call RPGCHG
0003 call RPGADD

Figure 34. Source for Menu Program

You run the menu by entering:
GO Tibrary name/PAYROL

If the user enters 1, 2, or 3 from the application menu, the source in Figure 34 calls
the programs RPGINQ, RPGCHG, or RPGADD respectively.

Chapter 8. Running a Program 77



Replying to Run-Time Inquiry Messages

Running a Program Using a User-Created Command

You can create a command to run a program by using a command definition. A
command definition is an object (type *CMD) that contains the definition of a
command (including the command name, parameter descriptions, and validity-
checking information), and identifies the program that performs the function
requested by the command.

For example, you can create a command, PAY, that calls a program, PAYROLL,
where PAYROLL is the name of an RPG program that you want to run. You can
enter the command interactively, or in a batch job. See the CL Programming for
further information about using command definitions.

Replying to Run-time Inquiry Messages

78 ILE RPG/400 Programmer's Guide

When you run a program with ILE RPG/400 procedures, run-time inquiry messages
may be generated. They occur when there is no error indicator or error subroutine
(*PSSR or INFSR) to handle the exception. The inquiry messages require a
response before the program continues running.

You can add the inquiry messages to a system reply list to provide automatic
replies to the messages. The replies for these messages may be specified individ-
ually or generally. This method of replying to inquiry messages is especially suit-
able for batch programs, which would otherwise require an operator to issue
replies.

You can add the following ILE RPG/400 inquiry messages to the system reply list:

RNQO100 RNQ0231 RNQO0501  RNQ1042 RNQ1251
RNQO101 RNQ0232 RNQO0502 RNQ1051 RNQ1255
RNQoO102 RNQ0299 RNQO600 RNQ1071 RNQ1261
RNQO103 RNQO0333 RNQO601  RNQ1201 RNQ1271
RNQO112 RNQO0401 RNQO0802 RNQ1211 RNQ1281
RNQO0113 RNQO0402 RNQO0803 RNQ1215 RNQ1282
RNQO114 RNQO411 RNQO804 RNQ1216 RNQ1284
RNQO0120 RNQO412 RNQO805 RNQ1217 RNQ1285
RNQO121 RNQO0413 RNQO0907 RNQ1218 RNQ1286
RNQO122 RNQO414 RNQ1011  RNQ1221 RNQ1287
RNQO0123 RNQO415 RNQ1021  RNQ1222 RNQ1299
RNQO0202 RNQO421 RNQ1022 RNQ1231 RNQ1331
RNQO211 RNQO0431 RNQ1031  RNQ1235 RNQ9998
RNQ0221 RNQO0432 RNQ1041  RNQ1241 RNQ9999
RNQ0222 RNQO0450

Note: ILE RPG/400 inquiry messages have a message id prefix of RNQ.

To add inquiry messages to a system reply list using the Add Reply List Entry
command enter:

ADDRPYLE sequence-no message-id

where sequence-no is a number from 1-9999, which reflects where in the list the
entry is being added, and message-id is the message number you want to add.
Repeat this command for each message you want to add.



Managing Activation Groups

Use the Change Job (CHGJOB) command (or other CL job command) to indicate
that your job uses the reply list for inquiry messages. To do this, you should
specify *SYSRPYL for the Inquiry Message Reply (INQMSGRPY) attribute.

The reply list is only used when an inquiry message is sent by a job that has the
Inquiry Message Reply (INQMSGRPY) attribute specified as
INQMSGRPY(*SYSRPYL). The INQMSGRPY parameter occurs on the following
CL commands:

» Change Job (CHGJOB)

» Change Job Description (CHGJOBD)
e Create Job Description (CRTJOBD)
e Submit Job (SBMJOB).

You can also use the Work with Reply List Entry (WRKRPYLE) command to
change or remove entries in the system reply list. See the CL Reference for details
of the ADDRPYLE and WRKRPYLE commands.

Ending an ILE Program

When an ILE program ends normally, the system returns control to the caller. The
caller could be a workstation user or another program (such as the menu-handling
program).

If an ILE program ends abnormally and the program was running in a different acti-
vation group than its caller, then the escape message CEE9901

Error message-id caused program to end.

is issued and control is returned to the caller.

A CL program can monitor for this exception by using the Monitor Message
(MONMSG) command. You can also monitor for exceptions in other ILE lan-
guages.

If the ILE program is running in the same activation group as its caller and it ends
abnormally, then the message issued will depend on why the program ends. If it
ends with a function check, then CPF9999 will be issued. If the exception is issued
by an RPG procedure, then it will have a message prefix of RNX.

For more information on exception messages, see “Exception Handling Overview”
on page 153.

Managing Activation Groups

An activation group is a substructure of a job and consists of system resources
(for example, storage, commitment definitions, and open files) that are allocated to
run one or more ILE or OPM programs. Activation groups make it possible for ILE
programs running in the same job to run independently without intruding on each
other (for example, commitment control and overrides). The basic idea is that all
programs activated within one activation group are developed as one cooperative
application.

You identify the activation group which your ILE program will run in at the time of
program creation. The activation group is determined by the value specified on the

Chapter 8. Running a Program 79



Managing Activation Groups

ACTGRP parameter when the program object was created. (OPM programs
always run in the default activation group; you cannot change their activation group
specification.) Once an ILE program (object type *PGM) is activated, it remains
activated until the activation group is deleted.

The remainder of this section tells you how to specify an activation group and how
to delete one. For more information on activation groups, refer to ILE Concepts.

Specifying an Activation Group

80

You control which activation group your ILE program will run in by specifying a
value for the ACTGRP parameter when you create your program (using CRTPGM
or CRTBNDRPG) or service program (using CRTSRVPGM).

Note: If you are using the CRTBNDRPG command, you can only specify a value
for ACTGRP if the value of DFTACTGRP is *NO.

You can choose one of the following values:
* a named activation group

A named activation group allows you to manage a collection of ILE programs
and service programs as one application. The activation group is created when
the first program which specified the activation group name on creation is
called. It is then used by all programs and service programs that specify the
same activation group name.

A named activation group ends when it is deleted using the CL command
RCLACTGRP. This command can only be used when the activation group is
no longer in use. When it is ended, all resources associated with the programs
and service programs of the named activation group are returned to the
system.

The named activation group QILE is the default value of the ACTGRP param-
eter on the CRTBNDRPG command. However, because activation groups are
intended to correspond to applications, it is recommended that you specify a
different value for this parameter. For example, you may want to name the
activation group after the application name.

e *NEW

When *NEW is specified, a new activation group is created whenever the
program is called. The system creates a name for the activation group. The
name is unique within your job.

An activation group created with *NEW always ends when the program(s) asso-
ciated with it end. For this reason, if you plan on returning from your program
with LR OFF in order to keep your program active, then you should not specify
*NEW for the ACTGRP parameter.

Note: This value is not valid for service programs. A service program can
only run in a named activation group or the activation group of its caller.

*NEW is the default value for the ACTGRP parameter on the CRTPGM
command.

If you create an ILE RPG/400 program with ACTGRP(*NEW), you can then call
the program as many times as you want without returning from earlier calls.
With each call, there is a new copy of the program. Each new copy will have
its own data, open its files, etc.. However, you must ensure that there is some

ILE RPG/400 Programmer's Guide




Managing Activation Groups

way to end the calls to 'itself'; otherwise you will just keep creating new acti-
vation groups and the programs will never return.

e *CALLER

The program or service program will be activated into the activation group of
the calling program. If an ILE program created with ACTGRP(*CALLER) is
called by an OPM program, then it will be activated into the OPM default acti-
vation group (*DFTACTGRP).

Running in the OPM Default Activation Group
When an OS/400 job is started, the system creates an activation group to be used
by OPM programs. The symbol used to represent this activation group is
*DFTACTGRP. You cannot delete the OPM default activation group. It is deleted
by the system when your job ends.

OPM programs automatically run in the OPM default activation group. An ILE
program will also run in the OPM default activation group when one of the following
occurs:

» The program was created with DFTACTGRP(*YES) on the CRTBNDRPG
command.

e The program was created with ACTGRP(*CALLER) at the time of program cre-
ation and the caller of the program runs in the default activation group. Note
that you can only specify ACTGRP(*CALLER) on the CRTBNDRPG command
if DFTACTGRP(*NO) is also specified.

Note: The resources associated with a program running in the OPM default acti-
vation group via *CALLER will not be deleted until the job ends.

Maintaining OPM RPG/400 and ILE RPG/400 Program Compatibility

If you have an OPM application which consists of several RPG programs, you can
ensure that the migrated application will behave like an OPM one if you create the
ILE application as follows:

1. Convert each OPM source member using the CVTRPGSRC command, making
sure to convert the /COPY members.

See “Converting Your Source” on page 310 for more information.

2. Using the CRTBNDRPG command, compile and bind each converted source
member separately into a program object, specifying DFTACTGRP(*YES).

For more information on OPM-compatible programs. refer to “Strategy 1:
OPM-Compatible Application” on page 19.

Deleting an Activation Group

When an activation group is deleted, its resources are reclaimed. The resources
include static storage and open files. A *NEW activation group is deleted when the
program it is associated with returns to its caller.

Named activation groups (such as QILE) are persistent activation groups in that
they are not deleted unless explicitly deleted or unless the job ends. The storage
associated with programs running in named activation groups is not released until
these activation groups are deleted.

Chapter 8. Running a Program 81



Managing Dynamically-Allocated Storage

The OPM default activation group is also a persistent activation group. The storage
associated with ILE programs running in the default activation group is released
either when you sign off (for an interactive job) or when the job ends (for a batch
job).

If many ILE RPG/400 programs are activated (that is called at least once) system
storage may be exhausted. Therefore, you should avoid having ILE programs that

.............. LR QU SHVUIU avlllw o —= M

use large amounts of static storage run in the OPM default activation group, since
the storage will not be reclaimed until the job ends.

Note: An ILE RPG/400 program created DFTACTGRP(*YES) will have its storage
released when it ends.

The storage associated with a service program is reclaimed only when the acti-
vation group it is associated with ends. If the service program is called into the
default activation group, its resources are reclaimed when the job ends.

You can delete a named activation group using the RCLACTGRP command. Use
this command to delete a nondefault activation group that is not in use. The
command provides options to either delete all eligible activation groups or to delete
an activation group by name.

For more information on RCLACTGRP refer to the CL Reference. For more infor-
mation on the RCLACTGRP and activation groups, refer to ILE Concepts.

Reclaim Resources Command

The Reclaim Resources (RCLRSC) command is designed to free the resources for
programs which are no longer active. The command works differently depending
on how the program was created. If the program is an OPM program or was
created with DFTACTGRP(*YES), then the RCLRSC command will close open files
and free static storage.

For ILE programs which were activated into the OPM default activation group
because they were created with *CALLER, files will be closed and storage re-
initialized when the RCLRSC command is issued. However, the storage will not
be released.

For ILE programs associated with a named activation group, the RCLRSC
command has no effect. You must use the RCLACTGRP command to free
resources in a named activation group.

For more information on the RCLRSC command, refer to CL Reference. For more
information on the RCLRSC and activation groups, refer to ILE Concepts.

Managing Dynamically-Aliocated Storage

82

ILE allows you to directly manage run-time storage from your program by managing
heaps. A heap is an area of storage used for allocations of dynamic storage. The
amount of dynamic storage required by an application depends on the data being
processed by the programs and procedures that use the heap. You manage heaps
by using ILE bindable APIs.

You are not required to explicitly manage run-time storage. However, you may
wish to do so if you want to make use of dynamically allocated run-time storage.

ILE RPG/400 Programmer's Guide




Managing Dynamically-Allocated Storage

For example, you may want to do this if you do not know exactly how big an array
or multiple-occurrence data structure should be. You could define the array or data
structure as BASED, and acquire the actual storage for the array or data structure
once your program determines how big it should be.

There are two types of heaps available on the system: a default heap and a
user-created heap. The rest of this section explains how to use a default heap to
manage run-time storage in an ILE RPG/400 program. For more information on
user-created heaps and other ILE storage management concepts refer to ILE Con-
cepts.

Managing the Default Heap
The first request for dynamic storage within an activation group results in the cre-
ation of a default heap from which the storage allocation takes place. Additional
requests for dynamic storage are met by further allocations from the default heap.
If there is insufficient storage in the heap to satisfy the current request for dynamic
storage, the heap is extended and the additional storage is allocated.

Allocated dynamic storage remains allocated until it is explicitly freed or until the
heap is discarded. The default heap is discarded only when the owning activation
group ends.

Programs in the same activation group all use the same default heap. If one
program accesses storage beyond what has be allocated, it can cause problems for
another program. For example, assume that two programs, PGM A and PGM B
are running in the same activation group. 10 bytes are allocated for PGM A, but 11
bytes are changed by PGM A. If the extra byte was in fact allocated for PGM B,
problems may arise for PGM B.

You can isolate the dynamic storage used by some programs and procedures
within an activation group. You do this by creating one or more user-created
heaps. For information on creating a user-created heap refer to ILE Concepts.

You can use the following ILE bindable APIs on the default heap:

The Free Storage (CEEFRST) bindable API frees one previous allocation of
heap storage.

The Get Heap Storage (CEEGTST) bindable API allocates storage within a
heap.

The Reallocate Storage (CEECZST) bindable API changes the size of previ-
ously allocated storage.

Note: You cannot use these or any other ILE bindable APIs from within a program
created with DFTACTGRP(*YES). This is because static binding (via the
CALLB operation) is not allowed in this type of program.

See the System API Reference for specific information about the storage manage-
ment bindable APIs.

Chapter 8. Running a Program 83



Managing Dynamically-Allocated Storage

84

Dynamically Allocating Storage for a Run-Time Array

The following example shows you how to manage dynamic storage belonging to
the default heap from an ILE RPG/400 procedure. In this example, the procedure
DYNARRAY dynamically allocates storage for a practically unbounded packed
array. The caller of the procedure can request one of three actions from
DYNARRAY on each call:

¢ Add an element to the array
¢ Return an element from the array
* Release the storage for the array.

DYNARRAY performs these actions using the three ILE bindable storage APIs,
CEEGTST (Get Storage), CEECZST (Reallocate Storage), and CEEFRST (Free
Storage).

Figure 35 shows the Definition specifications for DYNARRAY. The procedure has
been defined for use with a (15,0) packed decimal array. It could easily be con-
verted to handle a character array simply by changing the definition of Element to a
character field.

XSS SSSCSSS oSS CSSSSSCSSSSSSCSCSS oSS S SSSSSSSSSSSSSESSSSSSSSSSSSSSSS==%
* DYNARRAY : Allocate a (practically) unbounded run-time *
* Packed(15,0) array. This procedure will *
* Allocate the array, Return an Array value *
* and Deallocate the array. *
dSSSS=CSCSSS oSS SCSCSCSSS S S S S SS S S SSSSSS oSS SSSSSSSSSSSSSSSSSSSSSSSS=S=S%
K o o *
* Procedure parameters *
% 1. Input: The function required. Possibie values *
* 1 meaning add the element to the array. *
* 2 meaning return the element from the array *
* 3 meaning to release the storage for the array *
* 2. Input/Output: The Element to be added to or returned *
* from the array. *
* 3. Input: The Index of element to be added or returned *
K o o *
D Operation S 1P 0

D ETement S 15P 0

D Index S 5P 0

K o o *
* Named constant definitions of the operation that this

* procedure supports.

K o o o o o o e e e o e O *
D AddToArr C 1

D ReturnElem C 2

D Terminate C 3

Figure 35 (Part 1 of 2). Definition specifications for DYNARRAY

ILE RPG/400 Programmer's Guide




Managing Dynamically-Allocated Storage

K ot o e O *
* Define variables to interface to the storage management *
* API's. *
% 1) Heapld = Id of the heap. We will allocate from the *
* default heap and thus set this variable to 0. *
* 2) Size = Number of bytes to allocate or reallocate *
% 3) RetAddr= Address of the storage in the heap. *
K e - - *
D Heapld S 9B 0 INZ(0)

D Size S 9B 0

D RetAddr S *

K o " - *
* Define the dynamic array. We code the number of elements

% as the maximum allowed, noting that no storage will actually

* be declared for this definition (because it is BASED).

K o e - - - *
D DynArr S DIM(32767) BASED(DynArr@)

D LIKE(Element)

D DynArre@ S *

K e o " - o *
* Global to keep track of the current number of elements *
* in the dynamic array. *
K o *
D NumElems S 9B 0 INZ(0)

K o o o o *
* Initial number of elements that will be allocated for the *
* array, and minimum number of elements that will be added

* to the array on subsequent allocations.

K o o e o *
D InitAlloc C 100

D SubsAlloc C 100

Figure 35 (Part 2 of 2). Definition specifications for DYNARRAY

Figure 36 on page 86 shows the Calculation specifications which define the entry
parameter list for DYNARRAY and the parameter lists for the called APIs.

Chapter 8. Running a Program 85



Managing Dynamically-Allocated Storage

K o *
* Procedure parameters *
K - *
C *ENTRY PLIST
C PARM Operation
C PARM Element
C PARM Index
K o *
* Interface to the CEEGTST API (Get heap Storage). *
* 1) Heapld = Id of the heap. We will allocate from the *
* default heap and thus set this variable to 0. *
* 2) Size = Number of bytes to allocate *
* 3) RetAddr= Return address of the allocated storage *
* 4) *OMIT = The feedback parameter. Specifying *OMIT here *
* means that we will receive an exception from *
* the API if it cannot satisfy our request. *
* Since we do not monitor for it, the calling *
* procedure will receive the exception. *
K e e e e e e *
C CEEGTST_PL PLIST
C PARM HeapId
C PARM Size
o PARM RetAddr
C PARM *OMIT
K o o e *
* Interface to the CEECZST API (Reallocate Storage). *
* 1) RetAddr= The address of the storage that we want *
* reallocated. *
* 2) Size = The new size of the storage *
* 3) *OMIT = The feedback parameter. *
K o o o 1 1 = o = *
C CEECZST_PL PLIST
C PARM RetAddr
C PARM Size
C PARM *OMIT
K o *
* Interface to the CEEFRST API (Free Storage). *
* 1) RetAddr =The address of the storage that we want *
* freed. *
* 2) *OMIT = The feedback parameter. Specifying *OMIT here *
* means that we will receive an exception from *
* the API if it cannot satisfy our request. *
K *
C CEEFRST_PL PLIST
C PARM RetAddr
C PARM *OMIT

Figure 36. Parameter Lists for DYNARRAY

The basic logic of the procedure is the following:

1. Run the initialization subroutine which in turn calls the subroutine ALLOCATE.
This subroutine allocates heap storage based on initial value of the array (in
this case 100) by calling the ILE bindable API CEEGTST (Get Heap Storage).

2. Determine which operation to perform (add or return an element of the array, or
release storage).

» Before adding an element to the array, the procedure checks to see if there
is sufficient heap storage. If not, it calls a subroutine REALLOC which

86 ILE RPG/400 Programmer's Guide




Managing Dynamically-Allocated Storage

acquires additional storage using the ILE bindable API CEECZST (Reallo-
cate Storage).

¢ If a return is requested, the procedure returns to the caller either the
element requested, or zeros. The latter occurs if the requested element
has not actually been stored in the array.

« If a release of storage is requested, the procedure calls the subroutine
DEALLOC which in turn calls the ILE bindable API CEEFRST (Free Heap
Storage) and then returns to the caller with LR set on.

3. Return
Figure 37 shows the Calculation specifications which define the main logic, and

Figure 38 on page 88 shows the Calculation specifications containing the subrou-
tines.

K o o o *
* Select which operation to perform *
K o o o *
C SELECT

K *

*

= If the user selects to add to the array, then first check

%« if the array is large enough, if not then increase its *
* size. Add the element. *
K o o *
C Operation WHENEQ AddToArr

C Index IFGT NumE1ems

C EXSR REALLOC

C ENDIF

C EVAL DynArr(Index) = Element
K o o - *
x If the user selects to be returned an element from the *
% array then first check if the array is large enough *
* to satisfy the request. If not, then simply clear the *
* element. If the array is Targe enough then return the *
* element. *
K *

C Operation WHENEQ ReturnElem

C Index IFGT NumE1ems

C CLEAR Element

C ELSE

C EVAL Element = DynArr(Index)

C ENDIF

Figure 37 (Part 1 of 2). Main logic Portion of DYNARRAY

Chapter 8. Running a Program 87



Managing Dynamically-Allocated Storage

K o o e - " " " "> -
* If the user selects to terminate, then deallocate the

* storage for the array and set on LR to terminate this

* procedure.

by Sy g U Ly S U U ———
C Operation WHENEQ Terminate
C EXSR DEALLOC
C MOVE *ON *INLR
C ENDSL

T o o o - - - - . 8 D S . - . S G N D S G G . SR A R R A A G G -
*  Done

K o o o o o -
C RETURN

Figure 37 (Part 2 of 2). Main logic Portion of DYNARRAY

K o - = = = o = - o -
* SUBROUTINES
K o o - - -
EE R E E E F E F F E E E P P P P P T P e
* *INZSR: The Initialization Subroutine
*
* Function: ALLOCATE an initialial amount of
* storage for the run time array.
P e L E T T T T L T T T T T T e e
C *INZSR BEGSR
C Z-ADD InitAlloc NumE1lems
C EXSR ALLOCATE
C ENDSR
S E S SSS S SSSEEEE S S S S S C S SCCCCCCSCCSCCCSSSSSSSSSEEssSSSS=======
* ALLOCATE: Allocate storage for the dynamic array
*
* Function: Allocate storage for the DynArr
* array using the CEEGTST API.
e S S P P E T E T T
C ALLOCATE BEGSR
*
* Determine the number of bytes needed for the array.
*
C EVAL Size = NumElems * %SIZE(DynArr)

* % ¥ ¥ X

*

* %k X * *

*

Figure 38 (Part 1 of 3). Subroutines for DYNARRAY

88 ILE RPG/400 Programmer's Guide




Managing Dynamically-Allocated Storage

* *
* Allocate the storage and set the array basing pointer *
* to the pointer returned from the API. *
* *
C CALLB 'CEEGTST' CEEGTST_PL
C MOVE RetAddr DynArr@
*
* Initialize the storage for the array.
*
C 1 DO NumE1ems i 50
C CLEAR DynArr(i)
C ENDDO
C ENDSR
*::::::::::::::::::======:========:===:::====:==::=::=====::::::::*
* REALLOC: Reallocate storage *
* *
* Function: Increase the size of the dynamic array *
* and initialize the new elements. *
f=—=====—=—=—=—===—=—==========-====-===-=SS=S====S=S==SSSSSSSSSSSSSSS=SSSS=====%
C REALLOC BEGSR
*
* Remember the old number of elements
*
C Z-ADD NumE1ems 01dElems 50
*
* Calculate the new number of elements. If the Index is
* greater than the current number of elements in the array
% plus the new allocation, then allocate up to the index,
* otherwise, add a new allocation amount onto the array.
*
C IF Index > NumElems + SubsAlloc
C Z-ADD Index NumETems
o ELSE
C ADD SubsAlloc NumE1lems
C ENDIF
* *
% Calculate the new size of the array *
* *
o EVAL Size = NumElems * %size(DynArr)
* *
* Reallocate the storage and set the array basing pointer *
* to the pointer returned from the API. *
* *
C CALLB 'CEECZST! CEECZST_PL
C MOVE RetAddr DynArr@

Figure 38 (Part 2 of 3). Subroutines for DYNARRAY

Chapter 8. Running a Program 89



Managing Dynamically-Allocated Storage

90

*
* Initialize the new elements for the array.

C 1 ADD 01dETems i

C i DO NumETems i

C CLEAR DynArr (i)
C ENDDO

C ENDSR

* Function: Relase the storage for the array
k=================s============c========s=======sss=====s=ssooooos
C DEALLOC BEGSR
C CALLB 'CEEFRST! CEEFRST_PL
C ENDSR

Figure 38 (Part 3 of 3). Subroutines for DYNARRAY

To create the procedure DYNARRAY, type:
CRTRPGMOD MODULE (MYLIB/DYNARRAY) SRCFILE(MYLIB/QRPGLESRC)

The procedure can then be bound with other modules using CRTPGM or
CRTSRVPGM.

ILE RPG/400 Programmer's Guide




Program/Procedure Call Overview

Chapter 9. Calling Programs and Procedures

In ILE, it is possible to call either a program or procedure. The caller must identify
whether the target of the call statement is a program or a procedure. ILE RPG/400
provides the following operation codes to enable program or procedure calls and
passing of parameters.

Operation Code Function

CALL Call a program object

CALLB Call a bound procedure

RETURN Return to the calling program or procedure
PLIST Identify a parameter list

PARM Identify the parameters

This chapter describes how to:

e Call a program or procedure

» Pass parameters between programs and procedures
* Return from a program or procedure

e Use ILE bindable APIs

¢ Call a Graphics routine

e Call special routines.

Program/Procedure Call Overview

Program processing within ILE occurs at the procedure level. (ILE programs
consist of one or more modules which in turn consist of one or more procedures.
An ILE RPG/400 module contains only one procedure; other ILE languages may
allow more than one.) A 'program call' is a special form of procedure call; that is, it
is a call to the program entry procedure. A program entry procedure is the proce-
dure designated at program creation time to receive control when a program is
called.

This section compares program call with procedure call. It also presents the notion
of the call stack, in order to help you understand how a series of calls interact.

Calling Programs
You can call OPM or ILE programs using program calls. A program call is a call
made to a program object (*PGM). The called program's name is resolved to an
address at run time, just before the calling program passes control to the called
program for the first time. For this reason, program calls are often referred to as
dynamic calls.

Calls to an ILE program, an EPM program or an OPM program are all examples of
program calls. A call to a non-bindable API is also an example of a program call.

You use the CALL operation to make a program call.

When an ILE program is called, the program entry procedure receives the program
parameters and is given initial control for the program. In addition, all procedures
within the program become available for procedure calls.

© Copyright IBM Corp. 1994 91



Program/Procedure Call Overview

Calling Procedures

The Call Stack

92

Unlike OPM programs, ILE programs are not limited to using program calls. ILE
programs can also use static procedure calls or procedure pointer calls to call other
procedures. Procedure calls are also referred to as bound calls.

A static procedure call is a call to an ILE procedure where the name of the proce-
dure is resolved to an address during binding — hence, the term static. As a
result, run-time performance of using static procedure calls is faster than run-time
performance using program calls. Static calls allow operational descriptors, omitted
parameters, and they extend the limit (to 399) on the number of parameters
passed.

Procedure pointer calls provide a way to call a procedure dynamically. For
example, you can pass a procedure pointer as a parameter to another procedure
which would then run the procedure specified in the passed PARM operation. You
can also manipulate arrays of procedure names or addresses to dynamically route
a procedure call to different procedures. If the called procedure is in the same
activation group, the cost of a procedure pointer call is almost identical to the cost
of a static procedure call.

Using either type of procedure call, you can call a procedure in a separate module
within the same ILE program or service program, or a procedure in a separate ILE
service program. Any procedure that can be called using a static procedure call
can also be called through a procedure pointer.

You use the CALLB operation to make a procedure call.

The call stack is a list of call stack entries, in a last-in-first-out (LIFO) order. A call
stack entry is a call (CALL or CALLB) to a program or procedure. There is one
call stack per job.

When an ILE program is called, the program entry procedure is first added to the
call stack. The system then automatically performs a procedure call, and the asso-
ciated user's procedure is added. When a procedure is called, only the user's pro-
cedure is added; there is no overhead of a program entry procedure.

Figure 39 on page 93 shows a call stack for an application consisting of an OPM
program which calls an ILE program consisting of two modules, an RPG module
containing the program entry procedure and the associated user entry procedure,
and a C module containing a regular procedure. Note that in the diagrams in this
book, the most recent entry is at the bottom of the stack.

ILE RPG/400 Programmer's Guide




Program/Procedure Call Overview

CALL STACK
—“OPM ———— OPM
Program A
— ILE Program Call
-RPG Module ————— - - ILE
Program Entry PEP
Procedure
N RESEEE Procedure Call
i o ILE ! (by system)
User Entry
Procedure UEP
............ Procedure Call
~C Module ————————————— ey _ILE A
Procedure Procedure

Figure 39. Program and Procedure Calls on the Call Stack

Note: In a program call, the calls to the program entry procedure and the user
entry procedure (UEP) occur together, since the call to the UEP is auto-
matic. Therefore, from now on, the two steps of a program call will be com-
bined in later diagrams involving the call stack in this and remaining
chapters,

An important point to understand about the call stack is that an ILE RPG/400 pro-
cedure which is on the call stack cannot be called until it returns to its caller.
Therefore, be careful not to call another procedure which might call an already
active ILE RPG/400 procedure.

For example, assume that procedures A, B and C are in the same program. If
procedure A calls procedure B, then procedure B can call neither procedure A nor
B. If procedure B returns (with or without LR set on) and if procedure A then calls
procedure C, procedure C can call procedure B but not procedure A or C. See
Figure 40.

Call Stack Call Stack
PROC A PROC A
: |
PROC B PROC C
PROC B cannot call PROC A PROC C cannot call PROC A
or PROC B; only PROC C. or PROC C; only PROC B.

Figure 40. Procedure Cannot Call Other Active RPG Procedures

Chapter 9. Calling Programs and Procedures 93



Using the CALL or CALLB Operations

Similarly, OPM RPG programs already on the call stack cannot be called.

Using the CALL or CALLB Operations

94

You use the CALL (Call a Program) operation to make a program call and the
CALLB (Call a Bound Procedure) operation to make a procedure call. The two call
operations are very similar in their syntax and their use. To call a program or pro-
cedure, follow these general steps:

1. Identify the object to be called in the Factor 2 entry.

2. Optionally code an error indicator (positions 73 and 74) and/or an LR indicator
(positions 75 and 76).

When a called object ends in error the error indicator, if specified, is set on.
Similarly, if the called object returns with LR on, the LR indicator, if specified, is
set on.

3. To pass parameters to the called object, either specify a PLIST in the Result
field of the call operation or follow the call operation immediately by PARM
operations.

Either operation transfers control from the calling to the called object. After the
called object is run, control returns to the first operation that can be processed after
the call operation in the calling program or procedure.

The following considerations apply to either call operation:

» The Factor 2 entry can be a variable, literal, or named constant. Note that the
entry is case-sensitive.

For CALL only: The Factor 2 entry can be library name/program name, for
example, MYLIB/PGM1. If no library name is specified, then the library list is
used to find the program. The name of the called program can be provided at
run time by specifying a character variable in the Factor 2 entry.

For CALLB only: To make a procedure pointer call you specify the name of
the procedure pointer which contains the address of the procedure to be called.

A procedure can contain multiple calls to the same object with the same or
different PLISTs specified.

¢ When an ILE RPG/400 procedure (including a program entry procedure) is first
called, the fields are initialized and the procedure is given control. On subse-
quent calls to the same procedure, if it did not end on the previous call, then all
fields, indicators, and files in the called procedure are the same as they were
when it returned on the preceding call.

* The system records the names of all programs called from within an RPG pro-
cedure. When an RPG procedure is bound into a program (*PGM) you can
query these names using DSPPGMREF, although you cannot tell which proce-
dure is doing the call.

For a module, you can query the names of procedures called using DSPMOD
DETAIL(*IMPORT). Some procedures on this list will be system procedures;
the names of these will usually contain underscores and you do not have to be
concerned with these.

If you call an object using a variable, you will see an entry with the name *VAR-
IABLE (and no library name).

ILE RPG/400 Programmer's Guide




Passing Parameters

For CALLB only: The compiler creates an operational descriptor indicating the
number of parameters passed on the CALLB operation and places this value in
the *PARMS field of the called procedure's program status data structure. This
number includes any parameters which are designated as omitted (*OMIT on
the PARM operation).

If the (D) operation extender is used with the CALLB operation the compiler
also creates an operational descriptor for each field and subfield.

For more information on operational descriptors, see “Using Operational
Descriptors” on page 97.

There are further restrictions that apply when using the CALL or CALLB opera-
tion codes. For a detailed description of these restrictions, see the ILE
RPG/400 Reference.

Examples of the Call Operations
For examples of using the CALL operation, see:

“Sample Source for Debug Examples” on page 147, for example of calling an
RPG program.

“Using the *PARMS field in the PSDS” on page 100, for an example of calling
an RPG program.

For examples of using the CALLB operation, see:

“Sample Service Program” on page 65, for an example of calling a procedure
in a service program.

“Dynamically Allocating Storage for a Run-Time Array” on page 84, for an
example of calling bindable APIs.

“Sample Source for Debug Examples” on page 147, for example of calling a C
procedure.

“CUSMAIN: RPG Source” on page 272, for an example of a main inquiry
program calling various RPG procedures.

Passing Parameters

ILE RPG/400 provides the PLIST and PARM operation codes to identify fields to be
passed and received on call operations.

Keep in mind the following, especially when passing parameters to a different HLL
than ILE RPG/400:

Parameter Passing style of the HLLs

Each HLL has its way of passing parameters, that is, whether it passes a
pointer to the parameter value (as in ILE RPG/400), a copy of the value, or the
value itself. For more information on these styles see “ILE Interlanguage Calls”
on page 106.

Interlanguage Data Compatibility

Different HLLs support different ways of representing data. In general, you
should only pass data which have a data type common to the calling and called
program or procedure. However, sometimes you may not be sure of the exact
format of the data that is being passed to you. In this case you may specify to
the users of your procedure that an operational descriptor should be passed to

Chapter 9. Calling Programs and Procedures 95



Passing Parameters

provide additional information regarding the format of the passed parameters.
To find out how, see “Using Operational Descriptors” on page 97.

e Number of parameters.

In general, you should pass the same number of parameters as expected by
the called program or procedure. If you pass fewer parameters than expected,
and the called object references one for which no data was passed, then it will
get an error. For information on omitting parameters when calling procedures,
see “Omitting Parameters” on page 98.

The ILE RPG/400 compiler always passes an operational descriptor describing
the number of parameters passed to a called procedure. You can use this
descriptor to verify that the same number are being used by both the called
and calling procedures. See “Using Operational Descriptors” on page 97 for
more information.

Note: Other ILE languages may not pass operational descriptors as described
above.

Using the PLIST Operation
The PLIST operation:

» Defines a name by which a list of parameters can be referenced. The list of
parameters is specified by PARM operations immediately following the PLIST
operation.

* Defines the entry parameter list ("ENTRY PLIST).

Factor 1 of the PLIST operation must contain the PLIST name. This name can be
specified in the Result field of one or more call operations. If the parameter list is
the entry parameter list of a called procedure, then Factor 1 must contain *ENTRY.

Multiple PLIST operations can appear in a procedure. However, only one *ENTRY
PLIST can be specified.

For an example of the PLIST operation see Figure 30 on page 74, and Figure 42
on page 101.

Using the PARM operation
The PARM operation is used to identify the parameters which are passed from or
received by a procedure. Each parameter is defined in a separate PARM opera-
tion. You specify the name of the parameter in the Result field; the name need not
be the same as in the calling/called procedure.

The Factor 1 and Factor 2 entries are optional and indicate variables or literals
whose value is transferred to or received from the Result Field entry depending on
whether these entries are in the calling program/procedure or the called
program/procedure. Table 7 on page 97 shows how Factor 1 and Factor 2 are
used.

96 ILE RPG/400 Programmer's Guide




Passing Parameters

Table 7. Meaning of Factor 1 and Factor 2 Entries in PARM Operation

Status Factor 1 Factor 2

In calling Value transferred from Result Value placed in Result Field entry
procedure Field entry upon return. when call occurs.

In called Value transferred from Result Value placed in Result Field entry
procedure Field entry when call occurs. upon return.

Note: The moves to either the Factor 1 entry or the Result Field entry occur only

when the called procedure returns normally to its caller. If an error occurs
while attempting to move data to either entry, then the move is not com-
pleted.

If insufficient parameters are specified when calling a procedure, an error occurs
when an unresolved parameter is used by the called procedure. To avoid the error,
you can specify *OMIT in the Result field of the PARM operations of the unpassed
parameters. The called procedure can then check to see if the parameter has
been omitted by checking to see if the parameter has value of *NULL. For more
information, refer to “Omitting Parameters” on page 98.

Keep in mind the following when specifying a PARM operation:

One or more PARM operations must immediately follow a PLIST operation.

One or more PARM operations can immediately follow a CALL or CALLB oper-
ation.

When a multiple occurrence data structure is specified in the Result field of a
PARM operation, all occurrences of the data structure are passed as a single
field.

Factor 1 and the Result field of a PARM operation cannot contain a literal, a
look-ahead field, a named constant, or a user-date reserved word.

Factor 1 and Factor 2 must be blank if the Result field contains the name of a
multiple occurrence data structure or if it contains *OMIT.

There are other restrictions that apply when using the PARM operation code.
For a detailed description of these restrictions, see the ILE RPG/400
Reference.

For examples of the PARM operation see:

Figure 30 on page 74
Figure 23 on page 52
Figure 43 on page 104
Figure 26 on page 66

Using Operational Descriptors

Sometimes it is necessary to pass a parameter to a procedure even though the
data type is not precisely known to the called procedure, (for example, different
types of strings). In these instances you can use operational descriptors to

provide descriptive information to the called procedure regarding the form of the

parameter. The additional information allows the procedure to properly interpret the
string. You should only use operational descriptors when they are expected by the

called procedure, usually an ILE bindable API.

Chapter 9. Calling Programs and Procedures



Passing Parameters

Note: Initially, the ILE RPG/400 compiler only supports operational descriptors for
fields and subfields. In other words, operational descriptors are not avail-
able for data structures, arrays, or tables.

To use operational descriptors, you specify (D) as the operation code extender of
the CALLB operation. Operational descriptors are then built by the calling proce-
dure and passed as hidden parameters to the called procedure. You can specify
(D) even if the CALLB operation references omitted parameters. Operational
descriptors will not be built for omitted parameters.

Operational descriptors have no effect on the parameters being passed or in the
way that they are passed. When a procedure is passed operational descriptors
which it does not expect, the operational descriptors are simply ignored.

You can retrieve information from an operational descriptor using the ILE bindable
APIs Retrieve Operational Descriptor Information (CEEDOD) and Get Descriptive
information About a String Argument (CEESGI).

Note that operational descriptors are only allowed for procedure level calls. An
error message will be issued by the compiler if the 'D' operation code extender is
specified on a CALL operation.

For an example of using operational descriptors, see “Sample Service Program” on
page 65. The example consists of a service program which converts character
strings which are passed to it to their hexadecimal equivalent. The service program
uses operational descriptors to determine the length of the character string and the
length to be converted.

Omitting Parameters

98

When calling a procedure, you may sometimes need to pass fewer parameters
than the called procedure is expecting. For example, this situation might arise
when you are calling the ILE bindable APIs.

To indicate that a parameter is being omitted, specify *OMIT on the PARM opera-
tion. When *OMIT is specified, the compiler will generate the necessary code to
indicate to the called procedure that the parameter has been omitted.

Note: The language of the called procedure must support passing by reference.
Otherwise, the results are not predictable.

An omitted parameter cannot be referenced by the called procedure. If it is, an
error will occur. The value of specifying *OMIT, is that it allows you to write a
called procedure which can checks to see if a parameter has been omitted, and if it
has, avoid referencing it.

To check to see if a parameter has been omitted in an ILE RPG/400 procedure,
use the %ADDR built-in function to check the address of the parameter you wish to
check. If the address is *NULL, then the parameter has been omitted. You can
also use the CEESTA (Check for Omitted Argument) bindable API.

Keep in mind the following when specifying *OMIT:

* "OMIT is only allowed in PARM operations that immediately follows a CALLB
operation or in a PLIST used with a CALLB.

ILE RPG/400 Programmer's Guide




« Factor 1 and Factor 2 of a PARM operation must be blank, if *OMIT is speci-

fied.

e *OMIT is not allowed in a PARM operation that is part of a *ENTRY PLIST.

Passing Parameters

The following is a simple example of how *OMIT can be used. In this example, a

procedure calls the ILE bindable API CEEDOD in order to decompose an opera-

tional descriptor. The CEEDOD API expects to receive seven parameters; yet only

six have been defined in the calling procedure. The last parameter of CEEDOD

(and of most bindable APIs) is the feedback code which can be used to determine
how the API ended. However, the calling procedure has been designed to receive
any error messages via an exception rather than this feedback code. Conse-
quently, on the call to CEEDOD, the procedure must indicate that the parameter for
the feedback code has been omitted.

Figure 41 shows the coding for this situation.

D posn

D desctype
D datatype
D descinfl
D descinf2
D datalen

S

wnv LV w;mu;mu,

*:============:::=======:=:=======:===::::====::::==:::=====::::==*
* The following procedure calls an ILE API to decompose an *
% operational descriptor. It wishes to receive any error *
* messages via exception. It does this by omitting the *
* feedback code (the last parameter of the CEEDOD API). *
*=======:::=:======::::=====:===:==:=========:=====:======:=:=====‘k
K o *
+* CEEDOD parameters *
K o o *

DName+++++++++++ETDsFrom+++To/L+++IDc. Functions++++++tttttttt+++++

9B 0
9B 0
9B 0
9B 0
9B 0
9B 0

Figure 41 (Part 1 of 2). Omitting a parameter using the *OMIT keyword

Chapter 9. Calling Programs and Procedures

99



Passing Parameters

K o i *
* Call CEEDOD to decompose an operational descriptor, omitting the =*
* feedback code. *
K e e e e e *

CLONO1Factorl+++++++Opcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq

C EVAL posn=1

C CALLB CEEDOD

C PARM posn

C PARM desctype

C PARM datatype

C PARM descinfl

C PARM descinf2

C PARM datalen

C PARM *OMIT

C MOVE 1! *INLR

Figure 41 (Part 2 of 2). Omitting a parameter using the *OMIT keyword

A similar example of using *OMIT is provided earlier in this book in the example on
creating a service program. See “Sample Service Program” on page 65 for the
specific source.

Checking for the Number of Passed Parameters

100

You can use the *PARMS field in the program status data structure (PSDS) to
determine the number of parameters passed to a called procedure. This number
includes any parameters which are designated as omitted (*OMIT on the PARM
operation).

Depending on how the procedure has been written, this number may allow you to
avoid references to parameters that are not passed. For example, supposing you
want to write a procedure which will sometimes be passed three parameters and
sometimes four parameters. You can write the called procedure to process either
number depending on the value in the *PARMS field.

This might arise when a new field is required. New procedures which use the field
will pass a value for it. Old procedures can remain unchanged.

Because the number contained in the *PARMS field includes parameters passed
using *OMIT, it is recommended that you check for *NULL values on parameters
passed using the CALLB operation. For more information on using *OMIT, see
“Omitting Parameters” on page 98.

Using the *PARMS field in the PSDS

In this example, a program FMTADDR has been modified several times to allow for
a change in the address information for the employees of a company. FMTADDR
is called by three different programs. The programs differ only in the number of
parameters they use to process the employee information. That is, new require-
ments for the FMTADDR have arisen, and to support them, new parameters have
been added. However, old programs calling FMTADDR are still supported and do
not have to be changed or recompiled.

The changes to the employee address can be summarized as follows:

ILE RPG/400 Programmer's Guide




Passing Parameters

« Initially only the street name and number were required because all employees
lived in the same city. Thus, the city and province could be supplied by default.

« At a later point, the company expanded, and so the city information became
variable for some company-wide applications.

« Further expansion resulted in variable province information.

The program processes the information based on the number of parameters
passed. The number may vary from 3 to 5. The number tells the program whether
to provide default city and/or province values. Figure 42 shows the source for this
program.

The main logic of the FMTADDR program is as follows:

1. Check to see how many parameters were passed by testing the value of
NumofParms. This field is defined based on the *PARMS field in the program's
PSDS.

o If the number is greater than 4, then the default province is replaced with
the actual province supplied by the fifth parameter P_Province.

« If the number is greater than 3, then the default city is replaced with the
actual city supplied by the fourth parameter P_City.

2. Correct the street number for printing using the subroutine GetStreet#.

3. Concatenate the complete address.

4. Return.
*=================================================================*
* FMTADDR - format an address *
* *
* Entry parameters *
* 1. Address character(70) *
* 2. Street number packed(5,0) *
* 3. Street name character(20) *
* 4, City character(15)  (some callers do not pass) *
* 5. Province character(15)  (some callers do not pass) *
*=================================================================*

D Address S 70
D Street# S 5 0
D Street S 20
D P_City S 15
D P_Province S 15

Chapter 9. Calling Programs and Procedures 101



Passing Parameters

K e e e e e — —— — —  —  —— — — —— ——_——_———————_———— e e e
* Default values for parameters that might not be passed.

K e e e e e —— — — —— — —————————— — — ——— — —————— e
D City S 15 INZ('Toronto')
D Province S 15 INZ('Ontario')

K o o e e e e e e e e e e e e e
D Psds SDS

D NumOfParms *PARMS
C *ENTRY PLIST

C PARM Address

C PARM Street#
C PARM Street

C PARM P_City
C PARM P_Province

K e e e e e e e e e e e e e e e e e

* Check whether the province parameter was passed. If it was,
* replace the default with the parameter value.

K e e e e e e
C IF NumOfParms > 4
C EVAL Province = P_Province
C ENDIF

K e e e e e e e e e e

* Check whether the city parameter was passed. If it was,
* replace the default with the parameter value.

K e e e e e e e e
C IF NumOfParms > 3
C EVAL City = P_City
C ENDIF
K e e e e e e e
* Set 'CStreet#' to be character form of 'Street#'
K o e e e = o
C EXSR GetStreet#
K e e e e e e e e e e e e e e e e e e e e
= Format the address as Number Street, City, Province
B e e e
C CStreet# CAT(P) Street:1 Address
C CAT(P) ',':0 Address
C CAT(P) City:1 Address
C CAT(P) ',':0 Address
C CAT(P) Province:1 Address
C SETON LR

102 |LE RPG/400 Programmer's Guide




Passing Parameters

koS-SS =—Soo=—SSCSSSSCSSCSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS==S%
* SUBROUTINE: GetStreet#

% Get the character form of the street number, Teft-adjusted

% and padded on the right with blanks.
*:::::::::::::::=:::::::::::::::::::::=:::::::::::::::::::::::::::*
C GetStreet# BEGSR

C MOVEL Street# CStreet# 10

K o *
* Find the first non-zero. *
L U —————— kel Rl *
C 0! CHECK CStreet# Non® 50

K o o - e *
* If there was a non-zero, substring the number starting at *
* non-zero. *
K o 7 *
C IF NonO > @

C SUBST(P) CStreet#:Non® CStreet#

K - *
x If there was no non-zero, just use '0' as the street number. *
K - o T *
C ELSE

C MOVEL(P) 'O CStreet#

C ENDIF

C ENDSR

Figure 42 (Part 3 of 3). Source for program FMTADDR. Checks *PARMS to determine
the number of parameters passed.

Figure 43 on page 104 shows the source for the program PRTADDR. This
program illustrates the use of FMTADDR. For convenience, the three programs
which would each call FMTADDR are combined into this one program. Also, for
the purposes of example, the data is program-described.

Since PRTADDR is 'three programs-in-one', it must define three different address
data structures. Similarly, there are three parts in the Calculation specifications,
each one corresponding to programs at each stage. After printing the address, the
program PRTADDR returns.

Chapter 9. Calling Programs and Procedures 103



Passing Parameters

*::::::::::::::::===:==:==::=:::::====::====:::=:::::===========::
* PRTADDR - Print an address

*

* Entry parameters

* 1. Address character(70)

* 2. Street number packed(5,0)

* 3. Street name character(20)

* 4, City character(15)  (some callers do not pass)

* 5. Province character(15)  (some callers do not pass)

* Stagel: Original address data structure.

* Only street and number are variable information.

K e e e e e e e e e e e
D Stagel DS

D Street#l 5P 0 DIM(2) CTDATA
D StreetNaml 20 DIM(2) ALT(Street#1)

K e e e e e e e e e e e e e e
* Stage2: Revised address data structure as city information

* now variable.

K e e e e e
D Stage2 DS
D  Street#2 5P © DIM(2) CTDATA
D Addr2 35 DIM(2) ALT(Street#2)
D StreetNam2 20 OVERLAY (Addr2:1)
D City2 15 OVERLAY (Addr2:21)

K e e e e e e e e e e e e e

* Stage3: Revised address data structure as provincial

* information now varijable.
K e e e e e e =
D Stage3 DS
D Street#3 5P 0 DIM(2) CTDATA
D  Addr3 50 DIM(2) ALT(Street#3)
D StreetNam3 20 OVERLAY (Addr3:1)
D City3 15 OVERLAY (Addr3:21)
D Province3 15 OVERLAY (Addr3:36)
K o e e o = o e e e
* 'Program 1'- Use of FMTADDR before city parameter was added.
B e e e e e e e = =
C DO 2 X 50
C CALL ' FMTADDR'
C PARM Address 70
C PARM Street#1(X)
C PARM StreetNaml (X)
C EXCEPT
C ENDDO

* X Ok Ok X F A ¥

*

104

ILE RPG/400 Programmer's Guide




Passing Parameters

K o o e *
* 'Program 2'- Use of FMTADDR before province parameter was added.*
K o o *
C DO 2 X 50
C CALL 'FMTADDR'
C PARM Address 70
C PARM Street#2(X)
C PARM StreetNam2 (X)
C PARM City2(X)
C EXCEPT
C ENDDO
K o *
* 'Program 3' - Use of FMTADDR after province parameter was added.*
K o e e *
C DO 2 X 50
C CALL ' FMTADDR'
C PARM Address 70
C PARM Street#3(X)
C PARM StreetNam3(X)
C PARM City3(X)
C PARM Province3(X)
C EXCEPT
C ENDDO
C SETON LR
K o *
* Print the address. *
2K o i - *
OQSYSPRT E
0 Address

*%

00123Bumble Bee Drive

01243Hummingbird Lane

*%

00003Cows1ip Street Toronto

01150Eglinton Avenue North York

*%*

00012Jasper Avenue Edmonton Alberta

00027Avenue Road Sudbury Ontario

Figure 43 (Part 2 of 2). Source for program PRTADDR. Calls the program FMTADDR

To create these programs, follow these steps:

1. To create FMTADDR, using the source in Figure 42 on page 101, type:
CRTBNDRPG PGM(MYLIB/FMTADDR)

2. To create PRTADDR, using the source in Figure 43 on page 104, type:
CRTBNDRPG PGM(MYLIB/PRTADDR)
3. Call PRTADDR. The output is shown below:

123 Bumble Bee Drive, Toronto, Ontario
1243 Hummingbird Lane, Toronto, Ontario

3 Cowslip Street, Toronto, Ontario

1150 Eglinton Avenue, North York, Ontario
12 Jasper Avenue, Edmonton, Alberta

27 Avenue Road, Sudbury, Ontario

Chapter 9. Calling Programs and Procedures

105



Returning from a Called Program/Procedure

ILE Interlanguage Calls

ILE RPG/400 uses the same calling mechanisms for calling any ILE HLL program
or procedure: CALL and CALLB respectively. Similarly, ILE RPG/400 passes and
receives parameters using one passing method: by reference. In other words, ILE
RPG/400 passes and receives parameters via a pointer to the actual data object.
Other ILE languages may have different methods of passing data. Table 8 shows
the common parameter passing methods for the ILE languages.

Table 8. Default Parameter Passing Style for ILE Languages

ILE HLL Pass Data Object Receive Data Object
ILE RPG/400 By reference By reference
ILE C/400 By value, directly or By value, directly or
By reference By reference
ILE COBOL/400 By reference or By reference
BY CONTENT By value, indirectly
ILE CL By reference By reference

In short, to pass or receive parameters to or from procedure calls involving other
ILE languages, especially ILE C/400 or ILE COBOL/400, you must ensure that the
other procedure is set up to accept data by reference.

Returning from a Called Program/Procedure

Normal End

A return from a procedure (including a program entry procedure) involves the
removal of its call stack entry from the call stack along with other closing or cleanup
operations.

An ILE RPG/400 procedure returns control to the calling procedure in one of the
following ways:

¢ With a normal end
¢ With an abnormal end
e Without an end.

A description of the ways to return from a called procedure follows.

For a detailed description of where the LR, H1 through H9, and RT indicators are
tested in the RPG program cycle, see the section on the RPG program cycle in the
ILE RPG/400 Reference.

A procedure ends normally and control returns to the calling procedure when the
LR indicator is on and the H1 through H9 indicators are not on. The LR indicator
can be set on:

e implicitly, as when the last record is processed from a primary or secondary file
during the RPG program cycle

e explicitly, as when you set LR on.

A procedure also ends normally if:

106 ILE RPG/400 Programmer's Guide




Returning from a Called Program/Procedure

« The RETURN operation is processed, the H1 through H9 indicators are not on,
and the LR indicator is on.

e The RT indicator is on, the H1 through H9 indicators are not on, and the LR
indicator is on.
When a procedure ends normally, the following occurs:
« The Factor-2-to-Result-field move of a PARM operation is performed.

« All arrays and tables with a 'To file name' specified on the Definition specifica-
tions, and all locked data area data structures are written out.

 Any data areas locked by the procedure are unlocked.
« All files that are open are closed.

« A return code is set to indicate to the calling procedure that the procedure has
ended normally, and control then returns to the calling procedure.

On the next call to the procedure, a fresh copy is available for processing.

Note: If you are accustomed to ending with LR on to cause storage to be
released, and you are running in a named (persistent) activation group, you
may want to consider returning without an end. The reasons are:

 The storage is not freed until the activation group ends so there is no
storage advantage to ending with LR on.

« Call performance is improved if the program is not re-initialized for each
call.

You would only want to do this if you did not need your program re-
initialized each time.

Abnormal End

A procedure ends abnormally and control returns to the calling procedure when one
of the following occurs:

« The cancel option is taken when an ILE RPG/400 error message is issued.

« An ENDSR *CANCL operation in a *PSSR or INFSR error subroutine is proc-
essed. (For further information on the *CANCL return point for the *PSSR and
INFSR error subroutines, see “Specifying a Return Point in the ENDSR
Operation” on page 170).

o An H1 through H9 indicator is on when a RETURN operation is processed.
e An H1 through H9 indicator is on when last record (LR) processing occurs in
the RPG cycle.

A procedure also ends abnormally when something outside the procedure ends its
invocation. For example, this would occur if an ILE RPG/400 procedure X calls
another procedure (such as a CL procedure) that issues an escape message
directly to the procedure calling X.
When a procedure ends abnormally, the following occurs:

« All files that are open are closed.

 Any data areas locked by the procedure are unlocked.

Chapter 9. Calling Programs and Procedures 107



Returning from a Called Program/Procedure

* If there is a function check, then it is percolated to the caller. If not, the escape
message RNX9001 is issued directly to the caller of of X (unless another
escape message instead).

On the next call to the procedure, a fresh copy is available for processing. (For
more information on the procedure status data structure, see “Using RPG-Specific
Handlers” on page 161.)

Returning without Ending

A procedure can return control to the calling procedure without ending when none
of the LR or H1 through H9 indicators are on and one of the following occurs:

* The RETURN operation is processed.

* The RT indicator is on and control reaches the *GETIN part of the RPG cycle,
in which case control returns immediately to the calling procedure. (For further
information on the RT indicator, see the ILE RPG/400 Reference)

If you call a procedure and it returns without ending, when you call the procedure
again, all fields, indicators, and files in the procedure will hold the same values they
did when you left the procedure.

Note:

* This is not true if the program is running in a *NEW activation group,
since the activation group is deleted when the program returns. In that
case, the next time you call your program will be the same as if you had
ended with LR on.

* If you are sharing files, the state of the file may be different from the
state it held when you left the procedure.

You can use either the RETURN operation code or the RT indicator in conjunction
with the LR indicator and the H1 through H9 indicators. Be aware of the testing
sequence in the RPG program cycle for the RETURN operation, the RT indicator,
the LR indicator, and the H1 through H9 indicators.

Returning using ILE Bindable APIs

108

You can end a procedure normally by using the ILE bindable APl CEETREC.
However, the AP will end all call stack entries that are in the same activation group
up to the control boundary. When a procedure is ended using CEETREC it follows
normal LR processing, as described in “Normal End” on page 106. On the next
call to the procedure, a fresh copy is available for processing.

Similarly, you can end a procedure abnormally using the ILE bindable API
CEE4ABN. The procedure will end as described in “Abnormal End” on page 107.

Note: You cannot use either of these APIs in a procedure created with
DFTACTGRP(*YES), since procedure calls are not allowed in these proce-
dures.

For more information on CEETREC and CEE4ABN refer to the System API Refer-
ence.

ILE RPG/400 Programmer's Guide




Using Bindable APIs

Using Bindable APIs

Bindable application programming interfaces (APIs) are available to all ILE lan-
guages. In some cases they provide additional function beyond that provided by a
specific ILE language. They are also useful for mixed-language applications
because they are HLL independent.

The bindable APIs provide a wide range of functions including:

« Activation group and control flow management
Storage management

Condition management

Message services

Source Debugger

¢ Math functions

¢ Call management

e Operational descriptor access

You access ILE bindable APIs using the same call mechanisms used by ILE
RPG/400 to call procedures, that is, the CALLB operation. Figure 44 shows a
sample 'call' to a bindable API.

C CALLB  'CEExxxx'

C PARM parml

C PARM parm2

C PARM parmn

C PARM feedback

Figure 44. Sample Call Syntax for ILE Bindable APIs

where

o CEExxxx is the name of the bindable API

e parmi, parm2, ... parmn are omissible or required parameters passed to or
returned from the called API.

* feedback is an omissible feedback code that indicates the result of the bindable
API.

The following restrictions apply:

¢ APIs that require a return value cannot be called.
* APIs that require value parameters cannot be used.
* APIs cannot be used if DFTACTGRP(*YES) is specified on the CRTBNDRPG

crnommand
Cuiliiniariv.

For more information on bindable APIs, refer to the System API Reference.

Examples of Using Bindable APIs

For examples of using bindable APlIs, see:

e “Sample Service Program” on page 65, for an example of using CEEDOD

¢ “Dynamically Allocating Storage for a Run-Time Array” on page 84. for an
example of using CEEGTST, CEEFRST, and CEECZST.

* “Using Cancel Handlers” on page 176, for an example of using CEEHDLR and
CEEHDLU.

Chapter 9. Calling Programs and Procedures 109



Calling Special Routines

Calling a Graphics Routine

ILE RPG/400 supports the use of the CALL operation to call 0S/400 Graphics,
which includes the Graphical Data Display Manager (GDDM*, a set of graphics
primitives for drawing pictures), and Presentation Graphics Routines (a set of busi-
ness charting routines). Factor 2 must contain the literal or named constant
'‘GDDM' (not a field name or array element). Use the PLIST and PARM operations
to pass the following parameters:

* The name of the graphics routine you want to run.

* The appropriate parameters for the specified graphics routine. These parame-
ters must be of the data type required by the graphics routine.

The procedure that processes the CALL does not implicitly start or end 0S/400
graphics routines.

For more information on OS/400 Graphics, graphics routines and parameters, see
GDDM Programming and the GDDM Reference.

Note: You can call 0S/400 Graphics using the CALL operation; you cannot use
the CALLB operation. You cannot pass Date, Time, Timestamp, or Graphic
fields to GDDM, nor can you pass pointers to it.

Calling Special Routines

110

ILE RPG/400 supports the use of the following special routines using the CALL and
PARM operations:

e Message-retrieving routine (SUBR23R3)

* Moving Bracketed Double-byte Data and Deleting Control Characters
(SUBR40R3)

* Moving Bracketed Double-byte Data and Adding Control Characters
(SUBR41R3).

Note: You cannot use the CALLB operation to call these special subroutines.

While the message retrieval routine is still supported, it is recommended that you
use the QMHRTVM message API, which is more powerful.

Similarly, the routines SUBR40R3 and SUBR41R3 are being continued for compat-
ibility reasons only. They will not be updated to reflect the level of graphic support
provided by RPG IV via the new graphic data type.

ILE RPG/400 Programmer's Guide




Debugging and Exception Handling

This section describes how to:
* debug an ILE application using the ILE source debugger
» write programs that handle exceptions

¢ obtain a dump.

© Copyright IBM Corp. 1994 111



112 ILE RPG/400 Programmer's Guide




The ILE Source Debugger

Chapter 10. Debugging Programs

Debugging allows you to detect, diagnose, and eliminate run-time errors in a
program. You can debug ILE programs using the ILE source debugger.

This chapter describes how to use the ILE source debugger to:

* Prepare your ILE RPG/400 program for debugging

e Start a debug session

* Add and remove programs from a debug session

* View the program source from a debug session

¢ Set and remove conditional and unconditional breakpoints

¢ Step through a program

¢ Display the value of fields

¢ Change the value of fields

¢ Display the attributes of fields

¢ Equate a shorthand name to a field, expression, or debug command.

While debugging and testing your programs, ensure that your library list is changed
to direct the programs to a test library containing test data so that any existing real
data is not affected.

You can prevent database files in production libraries from being modified uninten-
tionally by using one of the following commands:

* Use the Start Debug (STRDBG) command and retain the default *NO for the
UPDPROD parameter.
¢ Use the Change Debug (CHGDBG) command.

See the appendix on debugging in CL Reference for more information on pre-
venting unintended modification of production files.

See the chapter on debugging in ILE Concepts, for more information on the ILE
source debugger (including authority required to debug a program or service
program and the effects of optimization levels).

The ILE Source Debugger

The ILE source debugger is used to detect errors in and eliminate errors from
program objects and service programs. Using debug commands with any ILE
program, you can:

¢ View the program source or change the debug view.

Set and remove conditional and unconditional breakpoints.

e Step through a specified number of statements.

e Display or change the value of fields, structures, and arrays.

e Equate a shorthand name with a field, expression, or debug command.

Before you can use the source debugger, you must select a debug view when you
create a module object or program object using CRTRPGMOD or CRTBNDRPG.
After starting the debugger you can set breakpoints and then call the program.

When a program stops because of a breakpoint or a step command, the pertinent
module object's view is shown on the display at the point where the program

© Copyright IBM Corp. 1994 113



The ILE Source Debugger

stopped. At this point you can perform other actions such as displaying or
changing field values.

Note: If your program has been optimized, you can still display fields, but their
values may not be reliable. To ensure that the content of fields or data
structures contain their correct (current) values, specify the NOOPT
keyword on the appropriate Definition specification. To change the opti-
mization level, see “Changing the Optimization Level” on page 59.

Debug Commands

114

Many debug commands are available for use with the ILE source debugger. The
debug commands and their parameters are entered on the debug command line
displayed on the bottom of the Display Module Source and Evaluate Expression
displays. These commands can be entered in uppercase, lowercase, or mixed
case.

Note: The debug commands entered on the debug command line are not CL
commands.

The online help for the ILE source debugger describes the debug commands,
explains their allowed abbreviations, and provides syntax diagrams for each
command. It also provides examples in each of the ILE languages of displaying
and changing variables using the source debugger. You can access the help while
in a debug session by pressing F1(Help).

The debug commands are listed below.

Command Description

ATTR Permits you to display the attributes of a variable. The attributes are
the size and type of the variable as recorded in the debug symbol
table.

BREAK Permits you to enter either an unconditional or conditional breakpoint

at a position in the program being tested. Use BREAK line-number
WHEN expression to enter a conditional breakpoint.

CLEAR Permits you to remove conditional and unconditional breakpoints.

DISPLAY  Allows you to display the names and definitions assigned by using the
EQUATE command. It also allows you to display a different source
module than the one currently shown on the Display Module Source
display. The module object must exist in the current program object.

EQUATE  Allows you to assign an expression, variable, or debug command to a
name for shorthand use.

EVAL Allows you to display or change the value of a variable or to display
the value of expressions, records, structures, or arrays.

QUAL Allows you to define the scope of variables that appear in subsequent
EVAL commands. This command applies only to languages, such as
ILE C/400, which have local variables. It does not apply to ILE
RPG/400.

STEP Allows you to run one or more statements of the program being
debugged.

ILE RPG/400 Programmer's Guide




Preparing a Program for Debugging

FIND Searches forwards or backwards in the module currently displayed for
a specified line number or string or text.

UP Moves the displayed window of source towards the beginning of the
view by the amount entered.

DOWN Moves the displayed window of source towards the end of the view by
the amount entered.

LEFT Moves the displayed window of source to the left

RIGHT Moves the displayed window of source to the right by the number of

characters entered.
TOP Positions the view to show the first line.

BOTTOM Positions the view to show the last line.

NEXT Positions the view to the next breakpoint in the source currently dis-
played.

PREVIOUS Positions the view to the previous breakpoint in the source currently
displayed.

HELP Shows the online help information for the available source debugger
commands.

Preparing a Program for Debugging

A program or module must have debug data available if you are to debug it. Since
debug data is created during compilation, you specify whether a module is to
contain debug data when you create it using CRTBNDRPG or CRTRPGMOD. You
use the DBGVIEW parameter on either of these commands to indicate what type of
data (if any) is to be created during compilation.

The type of debug data that can be associated with a module is referred to as a
debug view. You can create one of the following views for each module that you
want to debug. They are:

* Root source view
e COPY source view
¢ Listing view

¢ Statement view.

The default value for both CRTBNDRPG and CRTRPGMOD is to create a state-
ment view. This view provides the closest level of debug support to previous
releases.

If you do not want debug data to be included with the module or if you want faster
compilation time, specify DBGVIEW(*NONE) when the module is created.
However, the DUMP utility is not supported when no debug data is available.

Note also that the storage requirements for a module or program will vary some-
what depending on the type of debug data included with it. The following values for
the DBGVIEW parameter are listed in increasing order based on their effect on sec-
ondary storage requirements:

1. *NONE
2. *STMT
3. "SOURCE

Chapter 10. Debugging Programs 115



Preparing a Program for Debugging

4. *COPY
5. *LIST
6. "ALL

Once you have created a module with debug data and bound it into a program
object (*PGM), you can start to debug your program.

Creating a Root Source View

A root source view contains text from the root source member. This view does
not contain any /COPY members. Furthermore, it is not available if the root source
member is a DDM file.

You create a root source view to debug a module by using the *SOURCE, *COPY
or *ALL options on the DBGVIEW parameter for either the CRTRPGMOD or
CRTBNDRPG commands when you create the module.

The compiler creates the root source view while the module object (‘MODULE) is
being compiled. The root source view is created using references to locations of
text in the root source member rather than copying the text of the member into the
module object. For this reason, you should not modify, rename, or move root
source members between the module creation of these members and the debug-
ging of the module created from these members. If you do, the views for these
source members may not be usable.

For example, to create a root source view for a program DEBUGEX when using
CRTBNDRPG, type:

CRTBNDRPG PGM(MYLIB/DEBUGEX) SRCFILE(MYLIB/QRPGLESRC)
TEXT('ILE RPG/400 program DEBUGEX')
DBGVIEW (*SOURCE)

To create a root source view for a module DBGEX when using CRTRPGMOD,
type:
CRTRPGMOD MODULE (MYLIB/DBGEX) SRCFILE(MYLIB/QRPGLESRC)

TEXT('Entry module for program DEBUGEX')
DBGVIEW(*SOURCE)

Specifying DBGVIEW(*SOURCE) with either create command creates a root source
view for debugging module DBGEX. By default, a compiler listing with /COPY
members and expanded DDS, as well as other additional information is produced.

Creating a COPY Source View

116

A COPY source view contains text from the root source member, as well as the
text of all /COPY members expanded into the text of the source. When you use
the COPY view, you can debug the root source member of the program using the
root source view and the /COPY members of the program using the COPY source
view.

The view of the root source member generated by DBGVIEW(*COPY) is the same
view generated by DBGVIEW(*SOURCE). As with the root source view, a COPY
source view is not available if the source file is a DDM file.

You create a COPY source view to debug a module by using the *COPY or *ALL
option on the DBGVIEW parameter.

ILE RPG/400 Programmer's Guide




Preparing a Program for Debugging

The compiler creates the COPY view while the module object (*MODULE) is being
compiled. The COPY view is created using references to locations of text in the
source members (both root source member and /COPY members) rather than
copying the text of the members into the view. For this reason, you should not
modify, rename, or move source members between the time the module object is
created and the debugging of the module created from these members. If you do,
the views for these source members may not be usable.

For example, to create a source view of a program TEST1 that contains /COPY
members type:

CRTBNDRPG PGM(MYLIB/TEST1) SRCFILE(MYLIB/QRPGLESRC)
TEXT('ILE RPG/400 program TEST1')
DBGVIEW(*COPY)

Specifying DBGVIEW(*COPY) with either create command creates a root source
view with /COPY members for debugging module TEST1. By default, a compiler
listing is produced. The compiler listing will include /COPY members as well, since
OPTION(*SHOWCPY) is a default value.

Creating a Listing View ,
A listing view contains text similar to the text in the compiler listing produced by
the ILE RPG/400 compiler. The information contained in the listing view is
dependent on whether OPTION(*SHOWCPY) or OPTION(*EXPDDS) are specified
for either create command. OPTION(*SHOWCPY) includes /COPY members in the
listing and OPTION(*EXPDDS) includes externally-described files.

Note that if you specify indentation in the compiler listing (via the INDENT param-
eter), the indentation will not appear in the listing view.

You create a listing view to debug a module by using the *LIST or *ALL options on
the DBGVIEW parameter for either the CRTRPGMOD or CRTBNDRPG commands
when you create a module.

The compiler creates the listing view while the module object (*MODULE) is being
generated. The listing view is created by copying the text of the appropriate source
members into the module object. There is no dependency on the source members
upon which it is based, once the listing view is created.

For example, to create a listing view for a program TEST1 that contains expanded
DDS type: )

CRTBNDRPG PGM(MYLIB/TEST1) SRCFILE(MYLIB/QRPGLESRC)
SRCMBR(TEST1) OUTPUT (*PRINT)
TEXT('ILE RPG/400 program TEST1')
OPTION(*EXPDDS) DBGVIEW(*LIST)

Specifying DBGVIEW(*LIST) for the DBGVIEW parameter and *EXPDDS for the
OPTION parameter on either create command creates a listing view with expanded
DDS for debugging the source for TEST1. Note that OUTPUT(*PRINT) and
OPTION(*EXPDDS) are both default values.

Chapter 10. Debugging Programs 117



Starting the ILE Source Debugger

Creating a Statement View

A statement view allows the module object to be debugged using debug com-
mands. Since source will not be displayed you must make use of statement
numbers which are shown on the left-most column of the source section of the
compiler listing. In other words, to effectively use this view, you will need a com-
piler listing.

You create a statement view to debug a module by using the *STMT option on the
DBGVIEW parameter for either the CRTRPGMOD or CRTBNDRPG commands
when you create a module.

Use this view when:

» You have storage constraints, but do not want to recompile the module or
program if you need to debug it.

* You are sending compiled objects to other users and want to be able to diag-
nose problems in your code using the debugger, but you do not want these
users to see your actual code.

For example, to create a statement view for the program DEBUGEX using
CRTBNDRPG, type:

CRTBNDRPG PGM(MYLIB/DEBUGEX) SRCFILE(MYLIB/QRPGLESRC)
TEXT('ILE RPG/400 program DEBUGEX')

To create a statement view for a module using CRTRPGMOD, type:

CRTRPGMOD MODULE (MYLIB/DBGEX) SRCFILE(MYLIB/QRPGLESRC)
TEXT(Entry moduie for program DEBUGEX')

By default a compiler listing and a statement view are produced. Using a compiler
listing to obtain the statement numbers, you debug the program using the debug
commands.

If the default values for either create command have been changed, you must
explicitly specify DBGVIEW(*STMT) and OUTPUT(*PRINT).

Starting the ILE Source Debugger

118

Once you have created the debug view (statement, source, COPY, or listing), you
can begin debugging your application. To start the ILE source debugger, use the
Start Debug (STRDBG) command. Once the debugger is started, it remains active
until you enter the End Debug (ENDDBG) command.

Initially you can add as many as ten program objects to a debug session by using
the Program (PGM) parameter on the STRDBG command. They can be any com-
bination of OPM or ILE programs. You must have *CHANGE authority to a
program object to include it in a debug session.

Note: If debugging a program using the COPY or root source view, the source
code must be on the same system as the program object being debugged.
In addition, the source code must be in a library/file(member) with the same
name as when it was compiled.

ILE RPG/400 Programmer's Guide



Starting the ILE Source Debugger

If an ILE RPG/400 program with debug data is in a debug session, the entry
module is shown (if it has a debug view.) Otherwise the first module bound to the
ILE RPG/400 program with debug data is shown.

For example, to start a debug session for the sample debug program DEBUGEX
and a called program RPGPGM, type:

STRDBG PGM(MYLIB/DEBUGEX MYLIB/RPGPGM)

The Display Module Source display appears as shown in Figure 45. DEBUGEX
consists of two modules, an RPG module DBGEX and a C module cproc. See
“Sample Source for Debug Examples” on page 147 for the source for DBGEX,
cproc, and RPGPGM.

If the entry module has a root source, COPY, or listing view, then the display will
show the source of the entry module of the first program. In this case, the program
was created using DBGVIEW(*ALL) and so the source for the main module,
DBGEX, is shown.

Display Module Source

Program:  DEBUGEX Library:  MYLIB Module:  DBGEX
1 e
2 * DEBUGEX - Program designed to illustrate use of ILE source
3 * debugger with ILE RPG/400 source. Provides a
4 * sample of different data types and data structures.
5 *
6 * Can also be used to produce sample formatted dumps.
7 k=== ==============s===S-=Z=Z=====S=T==Z======S====SSS=SSS=SSS========
8
9 K e e e
10 * The DEBUG keyword enables the formatted dump facility.
11 K e e e
12 H DEBUG
13
14 K e e e e e e e e e — e ———————
15 * Define standalone fields for different ILE RPG/400 data types.
More...
Debug . . .

F3=End program F6=Add/Clear breakpoint F10=Step Fl1=Display variable
F12=Resume F13=Work with module breakpoints F24=More keys

Figure 45. Display Module Source display for program DEBUGEX

Note: ILE service programs cannot be specified on the STRDBG command. You
can add ILE service programs to a debug session by using option 1 (Add)
on the Work with Module List display (F14) or by letting the source
debugger add it as part of a STEP INTO debug command.

Setting Debug Options
You can set debug options after you start a debug session. Specifically, you can
indicate whether database files can be updated while debugging your program.
This option affects the UPDPROD parameter of the STRDBG command. The
UPDPROD parameter specifies whether database files in a production library can
be opened for updating records, or for adding new records, when the job is in
debug mode. If not, the files must be copied into a test library before trying to run
a program that uses the files.

Chapter 10. Debugging Programs 119



Adding/Removing Programs from a Debug Session

To set debug options, follow these steps:

1. After entering STRDBG, if the current display is not the Display Module Source
display, type:

DSPMODSRC
The Display Module Source display appears.
2. Press F16 (Set debug options) to show the Set Debug Options display.

3. On this display type Y (Yes) for the Update production files field, and press
Enter to return to the Display Module Source display. The database files in
production libraries are updated while the job is in debug mode.

Adding/Removing Programs from a Debug Session

You can add more programs to, and remove programs from a debug session, after
starting a debug session. You must have *CHANGE authority to a program to add
it to or remove it from a debug session.

For ILE programs, you use option 1 (Add program) on the Work with Module List
display of the DSPMODSRC command. To remove an ILE program or service
program, use option 4 (Remove program) on the same display. When an ILE
program or service program is removed, all breakpoints for that program are
removed. There is no limit to the number of ILE programs or service programs that
can be in or removed from a debug session at one time.

For OPM programs, you use the Add Program (ADDPGM) command or the
Remove Program (RMVPGM) command. Only ten OPM programs can be in a
debug session at one time.

Example of Adding a Service Program to a Debug Session

In this example you add the service program CVTTOHEX to the debug session
which already previously started. (See “Sample Service Program” on page 65 for a
discussion of the service program).

1. If the current display is not the Display Module Source display, type:
DSPMODSRC
The Display Module Source display appears.

2. Press F14 (Work with module list) to show the Work with Module List display as
shown in Figure 46 on page 121.

3. To add service program CVTTOHEX, on the first line of the display, type: 1
(Add program), CVTTOHEX for the Program/module field, MYLIB for the Library
field. Change the default program type from *PGM to *SRVPGM and press
Enter.

4. Press F12 (Cancel) to return to the Display Module Source display.

120 ILE RPG/400 Programmer's Guide




Adding/Removing Programs from a Debug Session

Work with Module List
System:  AS400S1
Type options, press enter.
1=Add program  4=Remove program 5=Display module source
8=Work with module breakpoints

Opt Program/module Library Type
1 cvttohex mylib *SRVPGM
_ RPGPGM MYLIB *PGM
_ RPGPGM *MODULE
_ DEBUGEX MYLIB *PGM
_ DBGEX *MODULE Selected
_ CPROC *MODULE
Bottom
Command

===>

F3=Exit  F4=Prompt F5=Refresh  F9=Retrieve F12=Cancel

Figure 46. Adding an ILE Service Program to a Debug Session

Example of Removing ILE Programs from a Debug Session
In this example you remove the ILE program CVTHEXPGM and the service
program CVTTOHEX from a debug session.

1. If the current display is not the Display Module Source display, type:
DSPMODSRC
The Display Module Source display appears.

2. Press F14 (Work with module list) to show the Work with Module List display as
shown in Figure 47 on page 122.

3. On this display type 4 (Remove program) on the line next to CVTHEXPGM and
CVTTOHEX, and press Enter.

4. Press F12 (Cancel) to return to the Display Module Source display.

Chapter 10. Debugging Programs 121



Viewing the Program Source

Work with Module List
System:  AS400S1
Type options, press enter.
1=Add program  4=Remove program 5=Display module source
8=Work with module breakpoints

Opt Program/module Library Type
_ *LIBL *PGM
4 CVTHEXPGM MYLIB *PGM
_ CVTHEXPG *MODULE
4 CVTTOHEX MYLIB *SRVPGM
_ CVTTOHEX *MODULE
_ RPGPGM MYLIB *PGM
_ RPGPGM *MODULE
_ DEBUGEX MYLIB *PGM
_ DBGEX *MODULE Selected
_ CPROC *MODULE
Bottom
Command

===>

F3=Exit  F4=Prompt F5=Refresh  F9=Retrieve Fl12=Cancel

Figure 47. Removing an ILE Program from a Debug Session

Viewing the Program Source
The Display Module Source display shows the source of a program object one

Al A Alaiaad Ak A diam A A mmmndliila Aliantla antivan Aanim lha alhavais if e tama Al ] A
mouuie vpject dt a uitie. A IMouuie Vbjell 5 SLUILE Ldall be STTOwWIT T ie rmouuice
object was compiled using one of the following debug view options:

+ DBGVIEW(*SOURCE)
« DBGVIEW(*COPY)

« DBGVIEW(*LIST)

« DBGVIEW(*ALL)

There are two methods to change what is shown on the Display Module Source
display:

e Change to a different module
¢ Change the view of a module

When you change a view, the ILE source debugger maps to equivalent positions in
the view you are changing to. When you change the module, the runnable state-
ment on the displayed view is stored in memory and is viewed when the module is
displayed again. Line numbers that have breakpoints set are highlighted. When a
breakpoint, step, or message causes the program to stop, and the display to be
shown, the statement where the breakpoint occurred is highlighted.

Viewing a Different Module
To change the module object that is shown on the Display Module Source display,
use option 5 (Display module source) on the Work with Module List display. You
access the Work with Module List display from the Display Module Source display
by pressing F14 (Work with Module List).

122 ILE RPG/400 Programmer's Guide




Viewing the Program Source

If you use this option with a program object, the entry module with a root source,
COPY, or listing view is shown (if it exists). Otherwise the first module object
bound to the program object with debug data is shown.

An alternate method of viewing a different module object is to use the DISPLAY
debug command. On the debug command line, type:

DISPLAY MODULE module-name

The module object module-name is shown. The module object must exist in a
program object that has been added to the debug session.

For example, to change from the module DBGEX in Figure 45 on page 119 to the
module cproc using the Display module source option, follow these steps:

1. To work with modules type DSPMODSRC, and press Enter. The Display Module
Source display is shown.

2. Press F14 (Work with module list) to show the Work with Module List display.
Figure 48 shows a sample display.

3. To select cproc, type 5 (Display module source) next to it and press Enter.
Since a root source view is available, it is shown, as in Figure 49 on page 124.
If a root source was not available, the first module object bound to the program
object with debug data is shown.

Work with Module List
System:  AS400S1
Type options, press enter.
1=Add program  4=Remove program 5=Display module source
8=Work with module breakpoints

Opt Program/module Library Type

_ *LIBL *PGM

_ RPGPGM MYLIB *PGM

_ RPGPGM *MODULE

_ DEBUGEX MYLIB *PGM

_ DBGEX *MODULE Selected

5 CPROC *MODULE

Bottom

Command

===>

F3=Exit  F4=Prompt F5=Refresh  F9=Retrieve Fl12=Cancel

Figure 48. Changing to a Different Module

Chapter 10. Debugging Programs 123



Viewing the Program Source

Display Module Source

Program:  DEBUGEX Library:  MYLIB Module:  CPROC
#include <stdlib.h>

#include <string.h>

#include <stdio.h>

extern char EXPORTFLD[6];

void c_proc(int *size, char **ptr)

*ptr = malloc(*size);
memset (*ptr, 'P',*size );
printf("import string: %6s.\n",EXPORTFLD);

DOONOOTH WN

—

Bottom
Debug . . .

F3=End program  F6=Add/Clear breakpoint F10=Step F11=Display variable
F12=Resume F13=Work with module breakpoints F24=More keys

Figure 49. Source View of ILE C procedure cproc

Changing the View of a Module
Several different views of an ILE RPG/400 module can be displayed depending on
the values you specify when you create the module. They are:

¢ Root source view
* COPY source view
 Listing view

You can change the view of the module object that is shown on the Display Module
Source display through the Select View display. The Select View display can be
accessed from the Display Module Source display by pressing F15 (Select View).
The Select View display is shown in Figure 50 on page 125. The current view is
listed at the top of the window, and the other views that are available are shown
below. Each module object in a program object can have a different set of views
available, depending on the debug options used to create it.

For example, to change the view of the module from root source to listing, follow
these steps:

1. Type DSPMODSRC, and press Enter. The Display Module Source display is
shown.

2. Press F15 (Select view). The Select View window is shown in Figure 50 on
page 125.

124 |LE RPG/400 Programmer's Guide




Setting and Removing Breakpoints

Display Module Source

Select View
Current View . . . : ILE RPG/400 Copy View
Type option, press Enter.

1=Select

ILE RPG/400 Listing View
ILE RPG/400 Source View

Opt View
1
_ ILE RPG/400 Copy View

Bottom
F12=Cancel

Debug . . .

F3=End program F6=Add/Clear breakpoint F10=Step Fll=Display variable
F12=Resume F13=Work with module breakpoints F24=More keys

Figure 50. Changing a View of a Module

The current view is listed at the top of the window, and the other views that are

available are shown below. Each module in a program can have a different set

of views available, depending on the debug options used to create it.

Note: if a moduie is created with DBGVIEW(*ALL), the Seiect View window
will show three views available: root source, COPY, and listing. If the

module has no /COPY members, then the COPY view is identical to the
root source view.

3. Type a 1 next to the listing view, and press Enter. The Display Module Source
display appears showing the module with a listing view.

Setting and Removing Breakpoints

You can use breakpoints to halt a program object at a specific point when it is
running. An unconditional breakpoint stops the program object at a specific
statement. A conditional breakpoint stops the program object when a specific
condition at a specific statement is met.

You set the breakpoints prior to running the program. When the program object
stops, the Display Module Source display is shown. The appropriate module object
is shown with the source positioned at the line where the breakpoint occurred. This
line is highlighted. At this point, you can evaluate fields, set more breakpoints, and
run any of the debug commands.

You should know the following characteristics about breakpoints before using them:

* When a breakpoint is set on a statement, the breakpoint occurs before that
statement is processed.

* When a statement with a conditional breakpoint is reached, the conditional
expression associated with the breakpoint is evaluated before the statement is

Chapter 10. Debugging Programs 125



Setting and Removing Breakpoints

processed. If the expression is true, the breakpoint takes effect and the
program stops on that line.

« |f the line on which you want to set a breakpoint is not a runnable statement,
the breakpoint will be set on the next runnable statement.

* If a breakpoint is bypassed that breakpoint is not processed.

 Breakpoint functions are specified through debug commands. These functions
include:

Adding breakpoints to program objects

Removing breakpoints from program objects

Displaying breakpoint information

Resuming the running of a program object after a breakpoint has been
reached.

If you change the view of the module after setting breakpoints, then the line
numbers of the breakpoints are mapped to the new view by the source debugger.

If you are debugging a module or program created with a statement view, then you
can set or remove breakpoints using statement numbers obtained from the compiler
listing. For more information on using statement numbers, see “Setting and
Removing Breakpoints Using Statement Numbers” on page 132.

Setting and Removing Unconditional Breakpoints

126

You can set or remove an unconditional breakpoint by using:

* F6 (Add/Clear breakpoint) from the Display Module Source display

* F13 (Work with module breakpoints) from the Display Module Source display
* The BREAK debug command to set a breakpoint

* The CLEAR debug command to remove a breakpoint

* The Work with Module Breakpoints display.

The simplest way to set and remove an unconditional breakpoint is to use F6
(Add/Clear breakpoint). The function key acts as a toggle and so it will remove a
breakpoint from the line your cursor is on, if a breakpoint is already set on that line.

To remove an unconditional breakpoint using F13 (Work with module breakpoints),
place your cursor on the line from which you want to remove the breakpoint and
press F13 (Work with module breakpoints). A list of options appear which allow
you to set or remove breakpoints. If you select 4 (Clear), a breakpoint is removed
from the line.

An alternate method of setting and removing unconditional breakpoints is to use the
BREAK and CLEAR debug commands. To set an unconditional breakpoint using
the BREAK debug command, type:

BREAK 1ine-number

on the debug command line. The variable line-number is the line number in the
currently displayed view of the module object on which you want to set a break-
point.

To remove an unconditional breakpoint using the CLEAR debug command, type:
CLEAR Tine-number

ILE RPG/400 Programmer's Guide




Setting and Removing Breakpoints

on the debug command line. The variable line-number is the line number in the
currently displayed view of the module object from which you want to remove a
breakpoint.

Example of Setting an Unconditional Breakpoint

In this example you set an unconditional breakpoint using F6 (Add/Clear break-
point). The breakpoint is to be set on the first runnable Calculation specification so
that the various fields and data structures can be displayed.

1. To work with a module type DSPMODSRC and press Enter. The Display Module
Source display is shown.

2. If you want to set the breakpoint in the module shown, continue with step 3. If
you want to set a breakpoint in a different module, type:

DISPLAY MODULE module-name

on the debug command line where module-name is the name of the module
that you want to display.

3. To set an unconditional breakpoint on the first Calculation specification, place
the cursor on line 76.

4. Press F6 (Add/Clear breakpoint). If there is no breakpoint on the line 76, then
an unconditional breakpoint is set on that line, as shown in Figure 51. If there
is a breakpoint on the line, it is removed.

Note: Because we want the breakpoint on the first Calculation specification,
we could have placed the cursor on any line before the start of the Cal-
culation specifications and the breakpoint would still have been placed
on line 76, since it is the first runnable statement.

Display Module Source
Program:  DEBUGEX Library:  MYLIB Module:  DBGEX
72 K o
73 * Move 'a's to the data structure DS2. After the move, the
74 * first occurrence of DS2 contains 10 character 'a's.
75 e et T T T Sy S
76 C MOVE *ALL'a’ DS2
77
78 K o e
79 * Change the occurrence of DS2 to 2 and move 'b's to DS2,
80 * making the first 10 bytes 'a's and the second 10 bytes 'b's
81 K e e ——— e ——————————
82 o 2 0CCUR DS2
83 C MOVE *ALL'b' DS2
84
85 K e e — e —————————
86 * Fldla is an overlay field of F1dl. Since F1dl is initialized
More...
Debug . . .
F3=End program  F6=Add/Clear breakpoint F10=Step F1ll=Display variable
F12=Resume F13=Work with module breakpoints F24=More keys
Breakpoint added to line 76.

Figure 51. Setting an Unconditional Breakpoint

5. After the breakpoint is set, press F3 (Exit) to leave the Display Module Source
display. The breakpoint is not removed.

Chapter 10. Debugging Programs 127



Setting and Removing Breakpoints

6. Call the program. When a breakpoint is reached, the program stops and the
Display Module Source display is shown again, with the line containing the
breakpoint highlighted. At this point you can step through the program or
resume processing.

Setting and Removing Conditional Breakpoints
You can set or remove a conditional breakpoint by using:

e The Work with Module Breakpoints display
* The BREAK debug command to set a breakpoint
¢ The CLEAR debug command to remove a breakpoint

Note: The relational operators supported for conditional breakpoints are <, >, =,
<=, >=, and <> (not equal).

One way you can set or remove conditional breakpoints is through the Work with
Module Breakpoints display. You access the Work with Module Breakpoints display
from the Display Module Source display by pressing F13 (Work with module break-
points). The display provides you with a list of options which allow you to either
add or remove conditional and unconditional breakpoints. An example of the
display is shown in Figure 52 on page 129.

To make the breakpoint conditional, specify a conditional expression in the Condli-
tion field. If the line on which you want to set a breakpoint is not a runnable state-
ment, the breakpoint will be set at the next runnable statement.

Once you have finished specifying all of the breakpoints, you call the program. You

can use F21 (Command Line) from the Display Module Source display to call the

program object from a command line or call the program after exiting from the
display.

When a statement with a conditional breakpoint is reached, the conditional
expression associated with the breakpoint is evaluated before the statement is run.
If the result is false, the program object continues to run. If the result is true, the
program object stops, and the Display Module Source display is shown. At this
point, you can evaluate fields, set more breakpoints, and run any of the debug
commands.

An alternate method of setting and removing conditional breakpoints is to use the
BREAK and CLEAR debug commands.

To set a conditional breakpoint using the BREAK debug command, type:
BREAK 1ine-number WHEN expression

on the debug command line. The variable line-number is the line number in the
currently displayed view of the module object on which you want to set a breakpoint
and expression is the conditional expression that is evaluated when the breakpoint
is encountered. The relational operators supported for conditional breakpoints are
noted at the beginning of this section.

In non-numeric conditional breakpoint expressions, the shorter expression is implic-
itly padded with blanks before the comparison is made. This implicit padding
occurs before any National Language Sort Sequence (NLSS) translation. See
“National Language Sort Sequence (NLSS)” on page 130 for more information on
NLSS.

128 ILE RPG/400 Programmer's Guide




Setting and Removing Breakpoints

To remove a conditional breakpoint using the CLEAR debug command, type:
CLEAR Tine-number

on the debug command line. The variable line-number is the line number in the
currently displayed view of the module object from which you want to remove a
breakpoint.

Example of Setting a Conditional Breakpoint Using F13
In this example you set a conditional breakpoint using F13 (Work with module
breakpoints).

1. To set a conditional breakpoint press F13 (Work with module breakpoints). The
Work with Module Breakpoints display is shown.

2. On this display type 1 (Add) on the first line of the list to add a conditional
breakpoint.

3. To set a conditional breakpoint at line 111 when *IN02="1", type 111 for the
Line field, *IN02="1' for the Condition field, and press Enter. Figure 52 shows
the Work with Module Breakpoints display after adding the conditional break-
point.

Work with Module Breakpoints
System:  TORASD80
Program . . . : DEBUGEX Library . . . : MYLIB
Module . . . : DBGEX Type . . . . . ¢ *PGM

Type options, press Enter.
1=Add  4=Clear

Opt Line Condition
111 *in@2="1"
_ 76
90
Bottom
Command

===>
F3=Exit  F4=Prompt F5=Refresh  F9=Retrieve F12=Cancel
Breakpoint added to line 111.

Figure 52. Setting a Conditional Breakpoint

A conditional breakpoint is set on line 111. The expression is evaluated before
the statement is run. If the result is true (in the example, if *IN02="1"), the
program stops, and the Display Module Source display is shown. If the result
is false, the program continues to run.

An existing breakpoint is always replaced by a new breakpoint entered at the
same location.

4. After the breakpoint is set, press F12 (Cancel) to leave the Work with Module
Breakpoints display. Press F3 (End Program) to leave the ILE source
debugger. Your breakpoint is not removed.

Chapter 10. Debugging Programs 129



Setting and Removing Breakpoints

5. Call the program. When a breakpoint is reached, the program stops, and the
Display Module Source display is shown again. At this point you can step

through the program or resume processing.

Example of Setting a Conditional Breakpoint Using the BREAK

Command

In this example, we want to stop the program when the date field BigDate has a
certain value. To specify the conditional breakpoint using the BREAK command:

1. From the Display Module Source display, enter:
break 112 when BigDate='1994-09-30"

A conditional breakpoint is set on line 112.

2. After the breakpoint is set, press F3 (End Program) to leave the ILE source

debugger. Your breakpoint is not removed.

3. Call the program. When a breakpoint is reached, the program stops, and the

Display Module Source display is shown again.

Display Module Source

Program:  DEBUGEX Library:  MYLIB Module:  DBGEX
105
106 K e
107 * After the following SETON operation, *INO2 = '1'.
108 K e
109 C SETON
110 C IF *INO2
111 C MOVE '1994-09-30' BigDate
112 C ENDIF
113
114 o e e e e e e
115 * Now start a formatted dump and return, by setting on LR.
116 K e
117 C DUMP
118 C SETON
119
More...
Debug . . . break 112 when BigDate='1994-09-30'

F3=End program  F6=Add/Clear breakpoint F10=Step Fl1=Display variable
F12=Resume F13=Work with module breakpoints F24=More keys

Figure 53. Setting a Conditional Breakpoint Using the BREAK Command

National Language Sort Sequence (NLSS)

Non-numeric conditional breakpoint expressions are divided into the following two

types:
e Char- 8: each character contains 8 bits

This corresponds to the RPG data types of character, date, time, and

timestamp.
¢ Char-16: each character contains 16 bits (DBCS)
This corresponds to the RPG graphic data type.

ILE RPG/400 Programmer's Guide




Setting and Removing Breakpoints

NLSS applies only to non-numeric conditional breakpoint expressions of type
Char-8. See Table 9 on page 131 for the possible combinations of non-numeric
conditional breakpoint expressions.

The sort sequence table used by the source debugger for expressions of type
Char-8 is the sort sequence table specified on the SRTSEQ parameter for the
CRTRPGMOD or CRTBNDRPG commands.

If the resolved sort sequence table is *HEX, no sort sequence table is used.
Therefore, the source debugger uses the hexadecimal values of the characters to
determine the sort sequence. Otherwise, the specified sort sequence table is used
to assign weights to each byte before the comparison is made. Bytes between,
and including, shift-out/shift-in characters are not assigned weights. This differs
from the way ILE RPG/400 handles comparisons; all characters, including the shift-
out/shift-in characters, are assigned weights.

Notes:

1. The alternate sequence specified by ALTSEQ (*SRC) on the Control specifica-
tion is not available to the ILE source debugger. Instead the source debugger
uses the *HEX sort sequence table.

2. The name of the sort sequence table is saved during compilation. At debug
time, the source debugger uses the name saved from the compilation to access
the sort sequence table. If the sort sequence table specified at compilation
time resolves to something other than *HEX or *JOBRUN, it is important the
sort sequence table does not get altered before debugging is started. If the
table cannot be accessed because it is damaged or deleted, the source
debugger uses the *HEX sort sequence table.

Table 9. Non-numeric Conditional Breakpoint Expressions.

Type Possible

Char-8 e Character field compared to character field
Character field compared to character literal 1
Character field compared to hex literal 2
Character literal 1 compared to character field
Character literal 1 compared to character literal 1
Character literal 1 compared to hex literal 2

* Hex literal 2 compared to character field 1

¢ Hex literal 2 compared to character literal 1

e Hex literal 2 compared to hex literal 2

Char-16 » Graphic field compared to graphic field
 Graphic field compared to graphic literal 3

» Graphic field compared to hex literal 2

¢ Graphic literal 3 compared to graphic field

¢ Graphic literal 3 compared to graphic literal 3
e Graphic literal 3 compared to hex literal 2

* Hex literal 2 compared to graphic field

» Hex literal 2 compared to graphic literal 3

1 Character literal is of the form 'abc'.
2 Hexadecimal literal is of the form X'hex digits'.

3 Graphic literal is of the form G'oK1K2i'. Shift-out is represented as o and shift-in is
represented as i.

Chapter 10. Debugging Programs 131



Stepping Through the Program Object

Setting and Removing Breakpoints Using Statement Numbers

You set and remove conditional or unconditional breakpoints using the statement
numbers found in the compiler listing for the module in question. This is necessary
if you want to debug a module which was created with DBGVIEW(*STMT).

To set an unconditional breakpoint using the BREAK debug command, type:
BREAK procedure-name/statement-number

on the debug command line. The variable procedure-name is the name of the pro-
cedure in which you are setting the breakpoint, which for ILE RPG/400 is the

module name. (ILE RPG/400 only allows one procedure per module.) The variable
statement-number is the statement number from the compiler listing on which you
want to set a breakpoint.

To set a conditional breakpoint using the BREAK debug command, type:
BREAK procedure-name/statement-number WHEN expression

on the debug command line. The variables procedure-name and statement-number
are the same as for unconditional breakpoints. The variable expression is the con-
ditional expression that is evaluated when the breakpoint is encountered.

To remove an unconditional or conditional breakpoint using the CLEAR debug
command, type:

CLEAR statement number

on the debug command line.

Removing All Breakpoints
You can remove all breakpoints, conditional and unconditional, from a program
object that has a module object shown on the Display Module Source display by
using the CLEAR PGM debug command. To use the debug command, type:

CLEAR PGM

on the debug command line. The breakpoints are removed from all of the modules
bound to the program.

Stepping Through the Program Object

After a breakpoint is encountered, you can run a specified number of statements of
a program object, then stop the program again and return to the Display Module
Source display. You do this by using the step function of the ILE source debugger.
The program object resumes running on the next statement of the module object in
which the program stopped. Typically, a breakpoint is used to stop the program
object.

You can step through a program object by using:
¢ F10 (Step) or F22 (Step into) on the Display Module Source display
e The STEP debug command

The simplest way to step through a program object one statement at a time is to
use F10 (Step) or F22 (Step into) on the Display Module Source display. When
you press F10 (Step) or F22 (Step into), then next statement of the module object

132 ILE RPG/400 Programmer's Guide



Stepping Through the Program Object

shown in the Display Module Source display is run, and the program object is
stopped again.

Note: You cannot specify the number of statements to step through when you use
F10 (Step) or F22 (Step into). Pressing F10 (Step) or F22 (Step into) per-
forms a single step.

Another way to step through a program object is to use the STEP debug command.
The STEP debug command allows you to run more than one statement in a single
step. The default number of statements to run, using the STEP debug command,
is one. To step through a program object using the STEP debug command, type:

STEP number-of-statements

on the debug command line. The variable number-of-statements is the number of
statements of the program object that you want to run in the next step before the
program object is halted again. For example, if you type

STEP 5

on the debug command line, the next five statements of your program object are
run, then the program object is stopped again and the Display Module Source
display is shown.

When a CALL statement to another program or procedure is encountered in a
debug session, you can:

¢ Step over the called program or procedure, or
¢ Step into the called program or procedure.

If you choose to step over the called program object, then the CALL statement and
the called program object are run as a single step. The called program object is
run to completion before the calling program object is stopped at the next step.
Step over is the default step mode.

If you choose to step into the called program object, then each statement in the
called program object is run as a single step. If the next step at which the running
program object is to stop falls within the called program object, then the called
program object is halted at this point and the called program object is shown in the
Display Module Source display.

Note: You cannot step over or step into RPG subroutines.

Stepping Over Program Objects

You can step over program objects by using:

¢ F10 (Step) on the Display Module Source display
* The STEP OVER debug command

You can use F10 (Step) on the Display Module Source display to step over a called
program object in a debug session. If the next statement to be run is a CALL
statement to another program object, then pressing F10 (Step) will cause the called
program object to run to completion before the calling program object is stopped
again.

Alternately, you can use the STEP OVER debug command to step over a called
program object in a debug session. To use the STEP OVER debug command,

type:

Chapter 10. Debugging Programs 133



Stepping Through the Program Object

STEP number-of-statements OVER

on the debug command line. The variable number-of-statements is the number of
statements of the program object that you want to run in the next step before the
program object is halted again. If this variable is omitted, the default is 1. If one of
the statements that are run contains a CALL statement to another program object,
the ILE source debugger will step over the called program object.

Stepping Into Program Objects

134

You can step into program objects by using:

* F22 (Step into) on the Display Module Source display
¢ The STEP INTO debug command

You can use F22 (Step into) on the Display Module Source display to step into a
called program object in a debug session. If the next statement to be run is a
CALL statement to another program object, then pressing F22 (Step into) will cause
the first runnable statement in the called program object to be run. The called
program object will then be shown in the Display Module Source display.

Note: The called program object must have debug data associated with it in order
for it to be shown in the Display Module Source display.

Alternately, you can use the STEP INTO debug command to step into a called
program object in a debug session. To use the STEP INTO debug command, type:

STEP number-of-statements INTO

on the debug command line. The variable number-of-statements is the number of
statements of the program object that you want to run in the next step before the
program object is halted again. If this variable is omitted, the default is 1.

If one of the statements that are run contains a CALL statement to another program
object, the debugger will step into the called program object. Each statement in the
called program object will be counted in the step. If the step ends in the called
program object then the called program object will be shown in the Display Module
Source display. For example, if you type

STEP 5 INTO

on the debug command line, the next five statements of the program object are run.
If the third statement is a CALL statement to another program object, then two
statements of the calling program object are run and the first three statements of
the called program object are run.

The STEP INTO command works with the CL CALL command as well. You can
take advantage of this to step through your program after calling it. After starting
the source debugger, from the initial Display Module Source display, enter

STEP 1 INTO
This will set the step count to 1. Use the F12 key to return to the command line

and then call the program. The program will stop at the first statement with debug
data.

ILE RPG/400 Programmer's Guide




Stepping Through the Program Object

Example of Stepping Into a Program Using F22

In this example, you use the F22 (Step Into) to step into the program RPGPGM

from the program DEBUGEX.

1. Ensure that the Display Module Source display shows the source for DBGEX.

2. To set an unconditional breakpoint at line 90, which is the last runnable state-

ment before the CALL operation, type Break and press Enter.

3. Press F3 (End program) to leave the Display Module Source display.

4. Call the program. The program stops at breakpoint 90, as shown in Figure 54.

Display Module Source

Program:  DEBUGEX Library:  MYLIB Module:  DBGEX
86 * Fldla is an overlay field of Fl1dl. Since Fldl is initialized
87 * to 'ABCDE', the value of Fldla(l) is 'A'. After the
88 * following MOVE operation, the value of Fldla(l) is '1'.
89 K e e e e e e e
90 C MOVE 1! Fldla(1)
91
92 K e e e e
93 * Call the program RPGPGM, which is a separate program object.
94 K e e e e e e e
95 C Plistl PLIST
96 C PARM Parml
97 C CALL 'RPGPGM' Plistl
98
99 K e e e e e e e ————————
100 * Call c_proc, which imports ExportFld from this program.
More...
Debug . . .

F3=End program  F6=Add/Clear breakpoint F10=Step F11=Display variable
F12=Resume F13=Work with module breakpoints F24=More keys
Breakpoint at line 90.

Figure 54. Display Module Source display of DBGEX Before Stepping Into RPGPGM

5. Press F22 (Step into). One statement of the program runs, and then the
Display Module Source display of RPGPGM is shown, as in Figure 55 on

page 136.

In this case, the first runnable statement of RPGPGM is processed (line 13)

and then the program stops.

Note: You cannot specify the number of statements to step through when you

use F22. Pressing F22 performs a single step.

Chapter 10. Debugging Programs

135



Displaying Data and Expressions

Display Module Source

Program: RPGPGM Library:  MYLIB Module: RPGPGM

1 P e L T T L e S B Y

2 * RPGPGM - Program called by DEBUGEX to illustrate the STEP

3 * functions of the ILE source debugger.

4 *

5 %= This program receives a parameter InputParm from DEBUGEX,

6 * displays it, then returns.

7 ko=zCZ=zooS=CSECSoESSSSEESoEsCTSSESSESSCESSSSSSSZSSS=SSSTSSSsSsSzoss

8

9 D InputParm S 4p 3

10

11 C *ENTRY PLIST

12 C PARM InputParm

13 C InputParm DSPLY

14 C SETON

Bottom

Debug . . .

F3=End program  F6=Add/Clear breakpoint F10=Step Fll=Display variable
F12=Resume F13=Work with module breakpoints F24=More keys
Step completed at Tine 13.

Figure 55. Stepping Into RPGPGM

Stepping Over Procedures
if you specify over on the step debug command, caiis to procedures, and functions
count as single statements. This is the default step mode. You can start the step-
over function by using:

e The Step Over debug command
* F10 (Step)

Stepping Into Procedures
If you specify into on the STEP debug command, each statement in a procedure or
function that is called counts as a single statement. Stepping through four state-
ments of a program could result in running 20 statements if one of the four is a call
to a procedure with 16 statements. You can start the step into function by using:

e The Step Into debug command
* F22 (Step into)

The called procedure must have debug data associated with it in order for it to be
shown in the Display Module Source display.

Displaying Data and Expressions

You can display the contents of fields, data structures, and arrays, and you can
evaluate expressions. There are two ways to display or evaluate:

* F11 (Display Variable)
e EVAL debug command

136 ILE RPG/400 Programmer's Guide



Displaying Data and Expressions

The scope of the fields used in the EVAL command is defined by using the QUAL
command. However, you do not need to specifically define the scope of the fields
contained in an ILE RPG/400 module because they are all of global scope.

The easiest way to display data or an expression is to use F11 (Display variable)
on the Display Module Source display. To display a field using F11 (Display vari-
able), place your cursor on the field that you want to display and press F11
(Display variable). The current value of the field is shown on the message line at
the bottom of the Display Module Source display.

In cases where you are evaluating structures, records, or arrays, the message
returned when you press F11 (Display variable) may span several lines. Messages
that span several lines are shown on the Evaluate Expression display to show the
entire text of the message. Once you have finished viewing the message on the
Evaluate Expression display, press Enter to return to the Display Module Source
display.

To display data using the EVAL debug command, type:
EVAL field-name

on the debug command line. The variable field-name is the name of the field, data
structure, or array that you want to display or evaluate. The value is shown on the
message line if the EVAL debug command is entered from the Display Module
Source display and the value can be shown on a single line. Otherwise, it is shown
on the Evaluate Expression display.

Figure 56 shows an example of using the EVAL debug command to display the
contents of a subfield LastName.

Display Module Source
Program:  DEBUGEX Library:  MYLIB Module:  DBGEX
57 D LastName 10A  INZ('Jones )
58 D FirstName 10A  INZ('Fred ")
59
60 K o o
61 * Define parameters for CALL and CALLB:
62 * 1, Parml is used when calling RPGPROG program.
63 * 2. ExportFld is defined for export for use with ILE C/400
64 * procedure, c_proc.
65 K e ——————————
66 DParml S 4P 3 INZ(6.666)
67 DExportF1d S 6A  INZ('export') EXPORT
68
69 XSS SSSSESSCSS S S S S SSSCSCSSSSSSCSSSSSSSSSSSSSSSS=ESSSSSSSS========
70 * Now the operation to modify values or call other objects.
71 XSS SSSSSSSSSSSSSSSSSSSSoSSSSSSSsSSSSSSSSSS=SSSSS===S=S============
More
Debug . . . eval LastName
F3=End program F6=Add/Clear breakpoint F10=Step Fll=Display variable
F12=Resume F13=Work with module breakpoints F24=More keys
LASTNAME = 'Jones !

Figure 56. Displaying a Field using the EVAL debug command

Figure 57 on page 138 shows the use of the EVAL command with different types
of RPG fields. The fields are based on the source in Figure 65 on page 148.
Additional examples are also provided in the source debugger online help.

Chapter 10. Debugging Programs 137



Displaying Data and Expressions

138

Scalar Fields RPG Definition

> EVAL String 6A  INZ('ABCDEF')
STRING = 'ABCDEF'

> EVAL PackedlDO 5P 2 INZ(-93.4)
PACKED1DO = -093.40

> EVAL ZonedD3D2 3S 2 INZ(-3.21)
ZONEDD3D2 = -3.21

> EVAL Bin4D3 4B 3 INZ(-4.321)
BIN4D3 = -4.321

> EVAL DBCSString 36 INZ(G' BBCCDD ')
DBCSSTRING = ' BBCCDD '

> EVAL NullPtr x  INZ(*NULL)

NULLPTR = SYP:=NULL

Based Fields

> EVAL String 6A INZ ('ABCDEF')
STRING = 'ABCDEF'

> EVAL BasePtr % INZ(%ADDR(String))
BASEPTR = SPP:C01947001218

> EVAL BaseString 6A  BASED(BasePtr)

BASESTRING = 'ABCDEF'

Date, Time, Timestamp Fields

> EVAL BigDate D INZ(D'9999-12-31"')
BIGDATE = '9999-12-31'
> EVAL BigTime T INZ(T'12.00.00')
BIGTIME = '12.00.00'
> EVAL BigTstamp Z INZ(Z'9999-12-31-12.00.00.000000

BIGTSTAMP = '9999-12-31-12.00.00.000000'

Figure 57. Sample EVAL commands based on Module DBGEX

Displaying the Contents of an Array

Specifying an array name with EVAL will display the full array. To display one
element of an array, specify the index of the element you wish to display in paren-
theses. You can also use the %INDEX debug built-in function.

To display a range of elements use the following range notation:

EVAL field-name (n...m)

The variable field-name is the name of the array, the variable n is a number repres-
enting the start of the range, and the variable m is a number representing the end
of the range.

Figure 58 on page 139 shows the use of EVAL with the array in DBGEX.

ILE RPG/400 Programmer's Guide




Displaying Data and Expressions

> EVAL Arry 3S 2 DIM(2) INZ(1.23)
ARRY(1) = 1.23 *x Display full array =x
ARRY(2) = 1.23

> EVAL Arry(2) *x Display second element ==

ARRY(2) = 1.23

> EVAL Arry(1..2) ** Display range of elements ==
ARRY (1) 1.23
ARRY (2) 1.23

Figure 58. Sample EVAL commands for an Array

Displaying the Contents of a Table

Using EVAL on a table will result in a display of the current table element. You can
display the whole table using the range notation. For example, to display a
3-element table, type:

EVAL TableA(1..3)

You can change the current element using the %INDEX built-in function. Figure 59
shows the use of EVAL with the table in DBGEX.

3 DIM(3) CTDATA

Compile-time data: **

*
*
w

>

Anna
aaa

> EVAL TableA how value a

TABLEA = 'aaa' current index

cce

> EVAL TableA(1) *% Specify index 1 =

TABLEA(1) = 'aaa’
> EVAL TableA(2) *% Specify index 2 =

TABLEA(2) = 'bbb'
> EVAL TableA(1..3) *x Specify the whole table *x

TABLEA(1) = 'aaa’ ‘

TABLEA(2) = 'bbb'

TABLEA(3) = 'ccc'

> EVAL TableA=%INDEX(3)
> EVAL TableA
TABLEA = 'ccc'

*

* Change current index to 3 ==

Figure 59. Sample EVAL commands for a Table

Displaying Data Structures

You display the contents of a data structure or its subfields as you would any
standalone field. You simply use the data structure name after EVAL to see the
entire contents, or the subfield name to see a subset.

When displaying a multiple-occurrence data structure, an EVAL on the data struc-
ture name will show the subfields using the current index. To specify a particular
occurrence, specify the index in parentheses following the data structure name.
For example, to display the contents of the second occurrence of DS1, type:

EVAL DS1(2)

Chapter 10. Debugging Programs 139



Displaying Data and Expressions

140

Similarly, to view the contents of a particular occurrence of a subfield, use the index
notation.

If a subfield is defined as an array overlay of another subfield, to see the contents
of the overlay subfield, you can use the %INDEX built-in function to specify the
occurrence, and the index notation to specify the array.

An alternative way of displaying a subfield which is an array overlay is to use the
following notation:

EVAL subfield-name(occurrence-index,array-index)

where the variable subfield-name is the name of the subfield you wish to display,
occurrence-index is the number of the array occurrence to display, and array-index
is the number of the element to display.

Figure 60 shows some examples of using EVAL with the the data structures
defined in DBGEX.

*#* Note that you can enter the data structure name or a subfield name. **

> EVAL DS3
TITLE OF DS3 = 'Mr. ! 5A  INZ('Mr. ')
LASTNAME OF DS3 = 'Jones ' 10A  INZ('Jones ")
FIRSTNAME OF DS3 = 'Fred ! 10A  INZ('Fred ")

> EVAL LastName
LASTNAME = 'Jones !

> EVAL DS1 OCCURS(3)
FLD1 OF DS1 = 'ABCDE' 5A  INZ('ABCDE')
FLDIA OF DSI(1) = 'A! 1A DIM(5) OVERLAY(F1d1)
FLDIA OF DS1(2) = 'B' 5B 2 INZ(123.45)
FLD1A OF DS1(3) = 'C'
FLD1A OF DS1(4) = 'D'
FLD1A OF DS1(5) = 'E'

FLD2 OF DS1 = 123.45

> EVAL DS1=%INDEX(2) *% Change the occurrence of DS1 #*
DS1=%INDEX(2) = 2

Figure 60 (Part 1 of 2). Using EVAL with Data Structures

ILE RPG/400 Programmer's Guide




Displaying Data and Expressions

> EVAL F1d1 *%x Display a Subfield **
FLD1 = 'ABCDE' (current occurrence)
> EVAL f1d1(2)
FLD1(2) = 'ABCDE' (second occurrence)
> EVAL Fldla ++* Display an Array Overlay Subfield **
FLD1A OF DS1(1) = 'A' (current occurrence)
FLD1A OF DS1(2) = 'B'
FLD1A OF DS1(3) = 'C'
FLD1A OF DS1(4) = 'D'
FLD1A OF DS1(5) = 'E'
> EVAL Fldla(2,1) *x Display 2nd occurrence, 1st element ==

FLD1A(2,1) = 'A'

> EVAL Fldla(2,1..2) - *x Display 2nd occurrence, 1st - 2nd elements **
FLD1A(2,1) = 'A'
FLD1A(2,2) = 'B'

Figure 60 (Part 2 of 2). Using EVAL with Data Structures

To display a data structure for which no subfields have been defined, you must use
the character display function of EVAL which is discussed below.

Displaying Indicators

Indicators are defined as 1-byte character fields. Except for indicators such as
*INLR, you can display indicators either as "INxx' or ""IN(xx)'. Because the system
stores indicators as an array, you can display them all or some subset of them
using the range notation. For example, if you enter EVAL *IN, you will get a list of
indicators 01 to 99. To display indicators *INO1 to *INO6 you would enter EVAL
*IN(1..6).

Figure 61 shows each of these ways using the indicators as they were set in
DBGEX.

> EVAL INO2

Identifier does not exist.
> EVAL *INO2

*INO2 = '1'
> EVAL *IN(02)

*IN(02) = '1'

> EVAL *INLR
*INLR = '0'
> EVAL *IN(LR)
Identifier does not exist.

> EVAL *IN(1..6) *x To display a range of indicators =*=*
*IN(1) = '0'
*IN(2) = '1"
*IN(3) = '0'
*IN(4) = ‘1
*IN(5) = '0'
*IN(6) = '1"

Figure 61. Sample EVAL commands for an Array

Chapter 10. Debugging Programs 141



Displaying Data and Expressions

Displaying Fields as Hexadecimal Values

You can use the EVAL debug command to display the value of fields in
hexadecimal format. To display a variable in hexadecimal format, type:

EVAL field-name: x number-of-bytes

on the debug command line. The variable field-name is the name of the field that
you want to display in hexadecimal format. 'x' specifies that the field is to be
displayed in hexadecimal format. The variable number-of-bytes indicates the
number of bytes displayed. If no length is specified after the 'x', the size of the
field is used as the length. A minimum of 16 bytes is always displayed. If the
length of the field is less than 16 bytes, then the remaining space is filled with
zeroes until the 16 byte boundary is reached.

For example, the field String is defined as six-character string. To find out the
hexadecimal equivalent of the first 3 characters, you would enter:

EVAL String: x 3
Result:
00000 C1C2C300 00000000 00000OOO 00000000 - ABC.............

Displaying Fields in Character Format

You can use the EVAL debug command to display a field in character format. To
display a variable in character format, type:

EVAL field-name: c number-of-characters

on the debug command line. The variable field-name is the name of the field that
you want to display in character format. 'c' specifies the number of characters to
display.

For example, in the program DEBUGEX, data structure DS2 does not have any
subfields defined. Several MOVE operations move values into the subfield.

Because there are no subfields defined, you cannot display the data structure.
Therefore, to view its contents you can use the character display function of EVAL.

EVAL DS2:C 20 Result: DS2:C 20 = 'aaaaaaaaaabbbbbbbbbb'

Using Debug Built-In Functions

142

The following built-in functions are available while using the ILE source debugger:
%SUBSTR Substring a string field.

%ADDR Retrieve the address of a field.

%INDEX Change the index of a table or multiple-occurrence data structure.
The %SUBSTR built-in function allows you to substring a string variable. The first
parameter must be a string identifier, the second parameter is the starting position,
and the third parameter is the number of single-byte or double-byte characters. In
addition. the second and third parameters must be positive, integer literals. Param-
eters are delimited by one or more spaces.

Use the %SUBSTR built-in function to:

» Display a portion of a character field
e Assign a portion of a character field

ILE RPG/400 Programmer's Guide




Changing the Value of Fields

Use a portion of a character field on either side of a conditional break
expression.

Figure 62 shows some examples of the use of %SUBSTR based on the source in
Figure 65 on page 148.

*%

*%

*%

*%

*%

EVAL String

STRING = 'ABCDE '

Display the first two characters of String **
EVAL %substr (String 1 2)

%SUBSTR (STRING 1 2) = 'AB'

EVAL TableA

TABLEA = 'aaa'

Display the first character in the first table element *=*
EVAL %substr(TableA 1 1)

%SUBSTR(TABLEA 1 1) = 'a’

EVAL BigDate

BIGDATE = '1994-10-23'

Set String equal to the first four characters of BigDate **
EVAL String=%substr(BigDate 1 4)

STRING=%SUBSTR(BIGDATE 1 4) = '1994 '

EVAL F1d1 (5 characters)
FLD1 = 'ABCDE'
EVAL String (6 characters)

STRING = '123456'

Set the characters 2-5 of String equal to the
first four characters of Fidl #*

EVAL %substr(String 2 4) = %substr(F1dl 1 4)

%SUBSTR(STRING 2 4) = %SUBSTR(FLD1 1 4) = 'ABCD'

EVAL String

STRING = '1ABCD6'

You can only use %SUBSTR on character or graphic strings! =**
EVAL %substr (Packed1DO 1 2)
String type error occurred.

Figure 62. Examples of %SUBSTR using DBGEX

To change the current index, you can use the %INDEX built-in function, where the
index is specified in parentheses following the function name. An example of
%INDEX is found in the table section of Figure 59 on page 139 and Figure 60 on
page 140.

Note: %INDEX will change the current index to the one specified. Therefore, any

source statements which refer to the table or multiple-occurrence data struc-
ture subsequent to the EVAL statement may be operating with a different
index than expected.

Changing the Value of Fields

You can change the value of fields by using the EVAL command with an assign-
ment operator (=).

The scope of the fields used in the EVAL command is defined by using the QUAL
command. However, you do not need to specifically define the scope of the fields
contained in an ILE RPG/400 module because they are all of global scope.

Chapter 10. Debugging Programs 143



Changing the Value of Fields

To change the value of the field, type:
EVAL field-name = value

on the debug command line. field-name is the name of the variable that you want
to change and value is an identifier, literal, or constant value that you want to
assign to variable field-name. For example,

EVAL COUNTER=3

changes the value of COUNTER to 3 and shows

COUNTER=3 = 3

on the message line of the Display Module Source display.

Use the EVAL debug command to assign numeric, alphabetic, and alphanumeric
data to fields. You can also use the %SUBSTR built-in function in the assignment
expression.

When you assign values to a character field, the following rules apply:

* If the length of the source expression is less than the length of the target
expression, then the data is left justified in the target expression and the
remaining positions are filled with blanks.

* If the length of the source expression is greater than the length of the target
expression, then the data is left justified in the target expression and truncated
to the length of the target expression.

Note: Graphic fields can be assigned any of the following:
* Another graphic field
* A graphic literal of the form G'oK1K2i'
* A hexadecimal literal of the form X'hex digits'
When assigning literals to fields, the normal RPG rules apply:
e Character literals should be in quotes.

» Graphic literals should be specified as G'oDDDDI', where o is shift-out and i is
shift-in.

* Hexadecimal literals should be in quotes, preceded by an 'x'.
¢ Numeric literals should not be in quotes.

Note: You cannot assign a figurative constant to a field using the EVAL debug
command. Figurative constants are not supported by the EVAL debug
command.

Figure 63 on page 145 shows some examples of changing field values based on
the source in Figure 65 on page 148. Additional examples are also provided in the
source debugger online help.

144 \LE RPG/400 Programmer's Guide




Changing the Value of Fields

*%

*%*

*%

*%*

k%

*%

Target Length = Source Length =*=

EVAL String='123456" (6 characters)
STRING='123456"' = '123456'
EVAL ExportFld (6 characters)

EXPORTFLD = 'export'
EVAL String=ExportFld
STRING=EXPORTFLD = 'export'

Target Length < Source Length =

EVAL String (6 characters)
STRING = 'ABCDEF'
EVAL LastName (10 characters)

LASTNAME="Williamson' = 'Williamson'
EVAL String=LastName
STRING=LASTNAME = 'Willia’

Target Length > Source Length **

EVAL String (6 characters)
STRING = '123456'

EVAL TableA (3 characters)
TABLEA = 'aaa'

EVAL String=TableA
STRING=TABLEA = 'aaa '

Using %SUBSTR ==

EVAL BigDate

BIGDATE = '1994-10-23'

EVAL String=%SUBSTR(BigDate 1 4)
STRING=%SUBSTR(BIGDATE 1 4) = '1994 '

Substring Target Length > Substring Source Length **
EVAL string = '123456'

STRING = '123456' = '123456'

EVAL LastName='Williamson'

LASTNAME="Williamson' = 'Williamson'

EVAL String = %SUBSTR(Lastname 1 8)

STRING = %SUBSTR(LASTNAME 1 8) = 'Willia'

Substring Target Length < Substring Source Length **
EVAL TableA

TABLEA = 'aaa'

EVAL String

STRING = '123456'

EVAL String=%SUBSTR(TableA 1 4)

Substring extends beyond end of string. *% Error **
EVAL String

STRING = '123456'

Figure 63. Examples of Changing the Values of Fields based on DBGEX

Chapter 10. Debugging Programs

145



Equating a Name with a Field, Expression, or Command

Displaying Attributes of a Field

You can display the attributes of a field using the Attribute (ATTR) debug
command. The attributes are the size (in bytes) and type of the variable as

recorded in the debug symbol table.

@aimi ~AL

Figure 64 shows some exair pies of dispiaying fieid attributes base
in Figure 65 on page 148. Addi tlona examples are also provided
debugger online help.

do
int

he source

> ATTR Nul1Ptr
TYPE = PTR, LENGTH = 16 BYTES
> ATTR ZonedD3D2
TYPE = ZONED(3,2), LENGTH = 3 BYTES
> ATTR Bin4D3
TYPE = BINARY, LENGTH = 2 BYTES
> ATTR Arry
TYPE = ARRAY, LENGTH = 6 BYTES
> ATTR tablea

TYPE = FIXED LENGTH STRING, LENGTH = 3 BYTES
> ATTR tablea(2)

TYPE = FIXED LENGTH STRING, LENGTH = 3 BYTES
> ATTR BigDate

TYPE = FIXED LENGTH STRING, LENGTH = 10 BYTES
> ATTR DS1

TYPE = RECORD, LENGTH = 9 BYTES
> ATTR SpcPtr

TYPE = PTR, LENGTH = 16 BYTES
> ATTR String

TYPE = FIXED LENGTH STRING, LENGTH = 6 BYTES
> ATTR *INO2

TYPE = CHAR, LENGTH = 1 BYTES
> ATTR DBCSString

TYPE = FIXED LENGTH STRING, LENGTH = 6 BYTES

Figure 64. Examples of Displaying the Attributes of Fields based on DBGEX

Equating a Name with a Field, Expression, or Command

You can use the EQUATE debug command to equate a name with a field,

expression or debug command for shorthand use. You can then use that name
alone or within another expression. If you use it within another expression, the
value of the name is determined before the expression is evaluated. These names

stay active until a debug session ends or a name is removed.

To equate a name with a field, expression or debug command, type:
EQUATE shorthand-name definition

on the debug command line. shorthand-name is the name that you want to equate
with a field, expression, or debug command, and definition is the field, expression,

or debug command that you are equating with the name.

For example, to define a shorthand name called DC which displays the contents of

a field called COUNTER, type:
EQUATE DC EVAL COUNTER

146 ILE RPG/400 Programmer's Guide




on the debug command line. Now, each time DC is typed on the debug command
line, the command EVAL COUNTER is performed.

The maximum number of characters that can be typed in an EQUATE command is
144. If a definition is not supplied and a previous EQUATE command defined the
name, the previous definition is removed. If the name was not previously defined,
an error message is shown.

To see the names that have been defined with the EQUATE debug command for a
debug session, type:
DISPLAY EQUATE

on the debug command line. A list of the active names is shown on the Evaluate
Expression display.

Source Debug National Language Support for ILE RPG/400

You should be aware of the following conditions that exist when you a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>